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Executive Summary

For the second time since its inception, The United States Air Force Scientific Advisory

Board (SAB) published its review of the service's future needs and present shortcomings in

terms of aircraft technology and mission fulfillment. This year, the SAB identified global

mobility as a key area in which the present Air Force fleet possesses a shortfall. The current

aging transport aircraft in active use lack the performance, availability, and affordability needed

to effectively fly the needed missions of today and tomorrow. In assessing possibilities for new

aircraft systems, the SAB gave top priority to the development of a Global Reach Aircraft, or

GRA. The GRA embodies the SAB's vision of a large, subsonic transport capable of transporting

150,000 pounds of payload over an unrefueled range of 12,000 nautical miles.

The combination of explosive air passenger growth, shrinking traffic handling capability at

existing airports, and recent f'mancial difficulties in the airline industry have combined to

necessitate the development of a VLT, or Very Large Transport. These first two realities mean an

increase in the number of air passengers, yet fewer air routes and terminal gates to handle the

surge in travel. The third bears with it added pressure on the airlines to maintain affordable ticket

prices while achieving a satisfactory return on their investment. Based on studies performed in

industry and at the NASA Langley Research Center, a VLT aircraft would be an advanced, dual-

deck, 800-passenger subsonic transport capable of affordable operations across 7500 nautical

mile international routes. The large passenger capacity allows for the transportation of more

passengers with fewer aircraft, thereby easing air route congestion and airport crowding. The

VLT's intended affordability should bring about ticket prices as much as 30% less than those for

the Boeing 747-400, currently the world's largest passenger aircraft, while yielding sound airline

profits.

As part of a two-year study under contract from the NASA Langley Research Center, the

Aerospace Systems Design Laboratory (ASDL) at the Georgia Institute of Technology is

currently developing the Dual-Mission Large Aircraft concept. A Dual-Mission Large Aircraft,

or DMLA, represents the possibility of a single aircraft capable of fulfilling both the GRA and

VLT roles. The DMLA, by combining the GRA and VLT into a single new aircraft, could

possibly lower the aircraft manufacturer's production costs through the resulting increase in

production quantity. This translates into lower aircraft acquisition costs, a primary concern for
both the Air Force and commercial airlines.

This report outlines the first steps taken in this study, namely the assessment of technical and

economic feasibility of the DMLA concept. In the course of this project, specialized GRA and

VLT aircraft were sized for their respective missions, using baseline conventional (i.e., lacking

advanced enabling technologies) aircraft models from previous work for the Air Force's Wright

Laboratory and NASA-Langley. DMLA baseline aircraft were then also developed, by first

sizing the aircraft for the more critical of the two missions and then analyzing the aircraft's

performance over the other mission. The resulting aircraft performance values were then

compared to assess technical feasibility. Finally, the life-cycle costs of each aircraft (GRA, VLT,



andDMLA) wereanalyzedto quantifyeconomicfeasibility.Thesestepswereappliedto botha
two-engineaircraftset,andafour-engineaircraftset.

The GRA configuration used in this study is based on a concept submitted by Lockheed-

Martin in response to the SAB's study, which ASDL modeled and analyzed. This aircraft design

was a fixed point design leaving little room for adaptation to the VLT mission. From an

aerodynamics point of view, the point design was expanded to a design space through the use of

Response Surface Methodology and Design of Experiments. It was intended that the space

created would capture the VLT requirements and fulfill the aspirations of the DMLA. The

design space was created by extending the fixed geometric characteristics of the current GRA to

a range of values and analyzing the impact on the aerodynamic and system level performance

characteristics. In addition, advanced technologies were infused to the baseline aircraft to create

eight feasible configurations. Each configuration was compared to the baseline and the impact of

adding new technologies was quantified.

The result was a set of sized two-engine and four-engine aircraft configurations for the GRA,

VLT, and DMLA roles. Performance results were obtained from the optimization of the

configurations, as were economics values from the subsequent life-cycle costs analyses. In the

end, successful synthesis and sizing of DMLA aircraft demonstrated technical feasibility of the

concept, and the results of the life-cycle cost analysis showed economic viability as well.

Additionally, the aircraft geometry variables most significantly impacting aircraft performance

were identified and quantified in terms of their effect. The results were used to define a DMLA

geometric design space, and assess the impact of enabling technologies on the DMLA.
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1. Background

Developments in recent years have prompted the Aerospace industry to focus on aspects

other than performance as a means of evaluating an aircraft's feasibility. Industry must now

consider the risk of new technologies, the affordability of the aircraft, manufacturing of new

materials, etc. Therefore, it is becoming increasingly important that the design methodology

utilized in future systems reflect this new focus. Historically, a Sequential and deterministic

approach to design, applying a top-down decomposition systems engineering methodology, was

utilized. Yet, this approach did not account for the manufacturing, scheduling, or economics of

the aircraft. The focus of late has been toward the Integrated Product and Process Development

0PPD) approach. IPPD promotes the integration of manufacturing processes and affordability to

the aircraft design disciplines. It encourages bringing more knowledge to the conceptual stages,

while maintaining design freedom as the design cycle progresses. As a result, the design space

and budget are not fixed or committed early in the design process.

The Aerospace Systems Design Laboratory (ASDL) has recognized the changing philosophy

in industry and has developed a systematic approach to design. This unique methodology not

only addresses the interdisciplinary interactions of design, but also the integration of design of

manufacturing to support the IPPD environment. This is achieved using Robust Design

Simulation (RDS). ASDL was founded in 1992 to support activities in this area. Since that time,

ASDL has promoted and further enhanced the concept of the IPPD approach to design. Even

though the RDS method encompasses the design disciplines, such as aerodynamics, structures,

and propulsion, and the affordability and supportability issues, this paper focuses on the

aerodynamic aspects and the implementation of ASDL's IPPD methodology. This proof of

concept is applied to the Dual-Mission Large Aircraft (DMLA) concept and can be utilized to

assist industry and NASA efforts in attempting to develop, quantify, and evaluate the metrics

necessary for the feasibility of a joint military/commercial transport.

1.1. Military Transport Need

For the second time since its inception, the United States Air Force (USAF) Scientific

Advisory Board (SAB) researched the future needs and present shortcomings in the Air Force's

overall mission effectiveness. The results of their findings are compiled in a series of collected

volumes, known as the New World Vistas. This document presents these findings, and identifies

revolutionary aircraft concepts and associated enabling technologies that could ultimately make

the Air Force both more effective and cost-efficient. The analyses and conclusions contained in

the New World Vistas encompass the following assumptions (Summary 1-2):

• Future Air Force operations will be staged directly from the CONUS, or Continental

United States. This comes in light of further defense spending cutbacks, which are

expected to continue base closings worldwide. From an aircraft design standpoint, this

assumption becomes the need for greater range and improved fuel consumption.

* The Air Force must be prepared to conduct airlift operations anywhere in the world on

short notice. Future conflicts will be smaller, localized to various remote regions of the

Aerospace Systems Design Laboratory Page 3
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world, where tensions may flare at any time. This necessitates aircraft with greater

reliability and operational availability.

System affordability and capability are equally important. Effective mission completion

requires more than high performance aircraft; new aircraft must also be affordable, or else

the Air Force could not could not afford to conduct all possible missions. Thus, life-cycle

cost metric must enter early into the design of any new aircraft.

In all operations - peacetime and wartime - mobility is a limiting factor. Airlift operations

require aircraft and personnel to enter extremely dangerous regions, where it may not be possible

to provide protection for aidifters or conduct responses to attacks (Summary 29). In addition, the

ever-changing world environment brings to the Air Force the very real possibility of the need to

simultaneously supply large forces in widely divergent points around the globe (Air 119). The

increasingly likely assumption that continued austerity will force base closings around the globe

further exacerbates the problem (Summary 1).

Airlift provides the speed and flexibility to deploy and sustain combat forces. As an example,

had the 120 C-17 Globemaster III transports planned for procurement been obtained sooner,

airlift during Desert Storm could have been conducted 20%-35% faster; during the first twelve

days alone, enough cargo could have been deployed amounting to twelve additional fighter

squadrons (Air 126). Internal Air Force studies set the present airlift need at 49-52 million ton-

miles per day, during such crisis situations as the conflict in the Baltics (Mobility 4). Present

mobility system capacity falls well short of this requirement, necessary to support existing

forces, even with the inclusion of the Civil Reserve Air Fleet, or CRAF (Summary 29). These

results are shown below in Figure 1.1-1, which depicts the breakdown of airlift ton-miles per

aircraft per year. Heavy dependence upon the CRAF is all too evident; the "CRAF III"

component is a hypothetical, last-resort use of all available commercial aircraft. Figure 1.1-2

depicts the C-5, C-141, and C-17 aircraft, the backbone of the Air Force's transport capability.

NrrM_
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Figure 1.1-1. Breakdown of present airlift capability.
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Figure 1.1-2. C-5, C-141, and C-17 transport aircraft.

The Air Force's transport fleet not only lacks strength in numbers, the few aircraft in service

are lacking in capability. The C-5 Galaxy, before the entry of the C-17 into service, was the sole

large aircraft capable of transporting outsize Army cargo (Wilkinson 30). Poor austere field

performance is evident from its 12,200 foot takeoff field length and 4900 foot landing field

length (C-5 2). Its operational availability of 67% in Desert Storm is unacceptable for future

rapid deployments (Mobility 6). The aircraft spends much of its time on the ground, receiving as

much as 60 maintenance man-hours for each flight-hour (Wilkinson 32). These maintenance-

intensive operations are partially caused by the vast array of complex FEBA (Forward Edge of

the Battle Area) equipment carried aboard, which is presently never used - this aircraft is far too

valuable too risk exposure to the dangers of FEBA operations (Wilkinson 37). Overall mission

performance is rather poor as well; the cruise Mach number is only 0.72, far less than

commercial aircraft, and the ferry range is a mere 5165 nautical miles (C-5 3).

The C-141 Starlifler is a tactical, airdrop-capable transport with aeromedical capability (C-

141 1). Despite its many roles, the C-141 must soon be retired, as it is an aging aircraft first

introduced into service in 1964 (Mobility 5). An extremely low cruise Math number of 0.66 and

short range of 2200 nautical miles results from the operational use of this older technology (C-

141 2). Although requiring less maintenance than the C-5, the C-141 was operationally available

only 78% of the time - still not enough forthe rapidly changing world of tomorrow (Mobility 6).

The C-17 Globemaster III is the latest addition to the transport fleet, having been first

introduced in 1993 (Air 119). It features better performance than its predecessors, in terms of

higher cruise speed (Mach number 0.77) and longer range (5200 nautical miles with a payload of

130,000 pounds) (C-17 2). Furthermore, payload bay flexibility makes the aircraft suitable for

the different missions required in the Air Force, described later (C-17 1). The combination of

needs for front-line operations and improved reliability were also addressed, as the C-17 has thus

far demonstrated 82.5% operational availability, requiring only 18.6 maintenance man-hours per

flight-hour (C-17 1). Unfortunately, Congressional budget cutting may mean too few of these

aircraft purchased for service to take up the transport capability (Mobility 4).

According to the New World Vistas, future airlifters will be required to fly missions in each

of the following four areas (Mobility 5-6):

• Airlift of personnel. Present shortfalls in transport capability would require 90% of all

personnel in a large-scale contingency to travel via CRAF.

• Rapid deployment of troops, supplies, and equipment. The increasingly unpredictable

nature of tomorrow will require deployments on extremely short notice.

• Aeromedical evacuation. Currently, as the C-141 is retired from service, the C-17 and

CRAF form nearly all of the current aeromedical transportation capability. However, C-

Aerospace Systems Design Laboratory Page 5
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17s are still few in number, and the CRAF cannot begin to fulfill wartime needs.

Furthermore, CRAF aircraft suffer from slow patient on/offloading, and lack the

capability to support several pieces of medical equipment.

Humanitarian aid. Whether by natural disaster or military and political aggression, the

lives of innocent people forever will be jeopardized, sometimes due to conflicts outside

the scope of the United States' foreign policy. The likely decimation of ground

infrastructure forces aerial transportation of relief supplies or evacuation of civilians.

The Mobility Volume of the New World Vistas (p. 11) prioritizes the development of the

following aircraft in response to the needs of these missions, and to fill the gaps in the present

capability of fulfilling these missions:

1. Global Reach Aircraft

2. Supersonic Military Transport

3. Ground-Effect Transport

First priority is given to the development of a Global Reach Aircraft, or GRA. To complete the

missions outlined above, such an aircraft must posses the following:

• The ability to fly 12,000 nautical miles, deliver cargo, and continue on to a terminal

refueling point without refueling. Aerial refueling is a logistics-intensive operation; long

range will remove transport dependence on the refueling fleet (Summary 30-33). Also,

global range is the key to reaching any point in the world nonstop (Mobility 1),

addressing the need to stage missions primarily from the CONUS. Lockheed-Martin

Aeronautical Systems Company, in pursuing GRA development, revised this range to

7500 nautical miles, on the grounds that any conceivable location on the globe can be

reached from the United States East or West Coast within this range (Mission 1). Figure

1.1-3 below illustrates the profile of a typical GRA mission.

4. Descent

3. Cruise _ ] 8. Cruise

_ 7. Climb/

.....
I" 7 00omi ;I" 00om, 

Figure 1.1-3. GRA mission profile.

A payload capacity of 150,000 pounds, while holding takeoff gross weight (TOGW)

under 1,000,000 pounds (Summary 30-33).

The infusion of new aerodynamic technologies, to greatly improve cruise lift-to-drag ratio

(L/D) over existing aircraft (Summary 30-33).
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• A 20% increase in propulsive efficiency (Summary 30-33).

• All-weather operation, by utilizing a GPS system more resistant to enemy signal jamming

(Summary 30-33).

• Point-of-use delivery capability. Items shipped spend enormous amounts of time on the

ground. Also, some landing fields are austere, and place the aircraft in danger of attack.

Furthermore, ground transport from more remote fields not only further delays shipping,

it also places the items shipped in greater danger of attack (Summary 30-33).

• Use of improved protection systems, to reduce dependency on fighter escorts. If possible,

improved ECM protection system s are needed (Summary 30-33).

• Improved survivability - an especially important aspect, given the proliferation of

missiles to third-world nations (Mobility 9).

• Improved reliability and maintainability. The C-5, the only aircraft in service capable of

transporting outsize cargo, suffers from especially poor reliability and maintainability

(Mobility 4). Furthermore, during Desert Storm, C-141 availability started at 87% and

fell to 78%; C-5 availability started at 79% and fell to 67%. Sustained airlift of new

materiel and reinforcement of existing materiel in the future requires operational

availability in excess of 90% (Mobility 41).

• A higher cruise speed. Again, future conflicts can flare up at any time; faster airlifters

would shorten reaction times. Furthermore, military aircraft are currently too slow to use

commercial air routes, forcing longer tracks across the globe to given destinations. Thus,

cruise Mach numbers in excess of 0.80 are a necessity (Mobility 4).

• Finally, any new system must be affordable. The need to improve effectiveness in light of

declining military spending necessitates lower acquisition, operations, and support costs

(Mobility 41).

Carrying 150,000 pounds of payload over 7500 nautical miles unrefueled, the global range of

a GRA would provide great flexibility in mobility operations; all refueling assets (air and

ground) that would be needed otherwise can now be refocused on other missions. Reliability can

be improved by using proven, commercial aircraft subsystems, resulting in greater aircraft

availability; this in turn reduces the number of aircraft needed. If this aircraft were developed

commercially first, then adapted to this military role, the aircraft's affordability would be vastly

increased (Mobility 12). Furthermore, global range supports CONUS-based power projection

(Mobility 37).
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1.2. Commercial Transport Need

In recent times, airlines worldwide have fallen on hard financial times, and in an age of

satellite communications, computer networking, and electronic mail, many feel that long range

travel may not be needed. Contrary to this somewhat pessimistic perception, recent surveys

predict that air travel will double by the year 2005. This growth will be especially large in the

Asian-Pacific markets, where economic analysts predict this region to be the air transport market

for the next twenty years (Kirby 1).

As a result of the increased traffic, airport congestion will reach unbearable levels without

considerable expansion of existing airports or construction of new ones. Added to this are the

problems of limited government financing and environmental group opposition, which hamper

airport construction of expansion. Thus, the increased congestion, along with the predicted

growth over the coming years, has pointed to the need for a high capacity, long range aircraft that

can meet the increased travel demand as well as maximize landing and takeoff slot utilization at

existing airports (Mecham). For example, gates at London's Heathrow Airport have been rated

the most difficult to obtain due to crowding. In a recent Airbus survey, twelve airlines from

Europe, the United States, and the Asian-Pacific region expressed a need for an airplane much

larger than the 747-400 in the near future, capable of transporting between 600 and 1000

passengers. In fact, Upali Wickrama, the chief of forecasting and economic planning for the

International Civil Aviation Organization, predicts that by 2015 there will be a demand for an

additional 443 aircraft with 400-600 seats and 360 aircraft with greater than 600 seats

(Lenorvitz). Based on economic viability studies performed in ASDL, an 800-passenger VLT

proved to be the most profitable over a wider range of markets when compared to 600- and 1000-

passenger VLT aircraft (Kirby 36).

Though these studies favorably show the need for a Very Large Transport (VLT), another

prediction that deserves considerable attention is that air travel is expected to move from the

business market to the more price sensitive tourist market. Since tourism focuses more on

"luxury" than business travel, tourists will only be willing to travel abroad if it is affordable and

comfortable. Consequently, airlines are looking for a 600 to a 1000 passenger airplane with an

affordable ticket price for the passenger while maintaining a reasonable Return On Investment

(ROI). As a result, the following goals were established for the development of the VLT concept:

• Achieve at least a 30% reduction in passenger ticket fare as compared to the Boeing 747-
400;

• Achieve a high ROI for the airlines;

• Achieve a low aircraft unit cost to reduce the risk of investment for the airlines; and

• Minimize the number of aircraft required to meet the predicted market demand needs.

This also would reduce the number of gates needed to serve a given airport.

Based on Airbus Market studies, and current long-range commercial transport aircraft, a VLT

mission profile would resemble that shown below in Figure 1.2-1.
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3. Cruise _i_ 4. Descent

M_ _ 6. Reserve

,____
I-L 7500 nmi + added FAA 200 nmi hI

Figure 1.2-1. VLT mission profile.
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2. The DMLA Solution

In assessing the needs of both military and commercial aircraft customers for a new large

subsonic transport, it is conceivable that a single aircraft can be manufactured on the same

assembly line, capable of fulfilling both the GRA and VLT missions. Lower acquisition cost,

desirable to both military and commercial customers, is the primary benefit of producing a

common aircraft on a single production line. This not only eliminates duplication of production

facilities, it also decreases the per unit cost through the increase in the number of units produced.

For example, as will be demonstrated later, it may be cheaper to produce a total of 900 DMLA

aircraft - 500 VLT variants and 400 GRA variants, for instance - than to separately produce 500

VLT aircraft and 400 GILA aircraft with no commonality.

These notions form the genesis of the Dual-Mission Large Aircraft, or DMLA, concept.

Figure 2-1 below shows VLT and GRA variants of a possible DMLA configuration.

VLT Variant GRA Variant

Figure 2-]. Possible DMLA configuration and variants.

2.1. Feasibility Study Motivation and Objectives

ASDL, under contract to the NASA Langley Research Center, engaged in the DMLA study

as a two-year research effort. The proposed research endeavors to develop a DMLA capable of

fulfilling the above GRA and VLT missions. In the course of this effort, the differences in

performance and economics of producing a DMLA will be quantified and compared against

those for two separate, specialized aircraft.

The ultimate conclusion of this effort will furnish answers to the following questions:

1. Will a DMLA adequately fulfill both the VLT and GRA missions, or are two separate,

specialized aircraft needed?

2. Are the manufacturing costs lower for a DMLA or a two-aircraft family?

3. Are the customer's (military and commercial) aircraft life-cycle costs less if they operate

a DMLA, or if each operates a specialized aircraft?

4. How do the answers to the above questions change with the infusion of enabling new

technologies?

5. What are the aerodynamic and structural characteristics and difficulties associated with a
DMLA?

Ultimately, the conclusion of this effort will deliver a DMLA configuration capable of

effectively fulfilling the given GILA and VLT missions, from both a performance and economics
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standpoint. If a single DMLA proves to be impractical, the research must pursue answers to the

above questions for a two-aircraft family (i.e., specialized GRA and VLT aircraft).

The DMLA effort draws upon work done under the following contracts and sponsors:

• Notional Aircraft, for the USAF Wright Laboratory. One result of this effort was a sized

GILA configuration.

• Very Large Transport study, for the NASA Langley Research Center. NASA-Langley

provided to ASDL several VLT configurations, including a sized 800-passenger
conventional aircraft.

The sized aircraft configurations developed by the end of these efforts became the starting point

for the research project undertaken and described here.

This research problem intended to determine the technical and economic feasibility of the

DMLA concept. Comparison of conventional, specialized GRA and VLT aircraft against their

DMLA-variant counterparts lies at the heart of the problem solution. The tasks described below

form, on a preliminary level, the very first steps in the execution of the overall effort detailed

previously. As the study progresses, the level of detail will increase from that of this research

problem.

The following tasks were completed in this portion of the study:

• Analysis of the GRA and VLT mission profiles, from a synthesis and sizing point of

view. The mission more critical to the sizing of a DMLA needed to be identified.

• Definition of initial designs - that is, the development and sizing of conventional GRA,

VLT, and DMLA baseline configurations. Both two- and four-engine aircraft "sets" were

developed, to add a dimension of comparison to this study.

• Performance optimization of all defined baseline aircraft.

• Analysis of resulting life-cycle costs for resulting configurations.

• Assessment of possible new technologies and alternate configurations that may be

applicable to the remainder of the full two-year study.

The "Approach" chapter below details the rationale behind these steps.

"Conventional" implies an aircraft with no new technologies infused, i.e., an aircraft

containing only those technologies utilized in practice to this day, or scheduled for utilization in

the short term (within the next year). Conventional aircraft were modeled to provide the most

equivalent bases for comparison, as new technologies could improve some aircraft more than

others, making the given aircraft more favorable when, in actuality, the reverse may be true. For

example, a conventional GRA may achieve better performance than a conventional DMLA

variant; the identical application of some technology may benefit the DMLA more than the

GRA, skewing the results for comparison of the two aircraft. Baseline aircraft must have the

same performance starting point in order to fairly gauge technical feasibility.
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k

2.2. Aero@namic Study Motivation and Objectives

As stated previously, a feasible GRA design has been identified. This design is a fixed point

and leaves little room for adaptation to the VLT mission requirements. Therefore, the point

design needs to be expanded to a design space. With hope, the space would capture the VLT

requirements and fulfill the aspirations of a DMLA. To extend this point design to a design

space, the fixed geometric characteristics of the current GRA must be expanded to a range of

values. As an example, the GRA currently has a wing aspect ratio; is this value the optimal?

This topic raises a few questions:

1. Does the aspect ratio, or any other design variable, have to be fixed at its current value, or

can it vary?

2. If the geometric characteristics deviate, what is the impact on performance and system
level metrics?

3. Which geometric characteristics influence these parameters the most?

4. What physical limits must be imposed on those geometric characteristics?

The focus of this study was to respond to these questions and, hence, identify a feasible

design space for the GRA. This space was defined by considering all of the geometric

characteristics which influence the aerodynamic performance and system level performance of

feasible GRA designs.

Since the vision of the DMLA is both commercial and military in scope, the needs of both

customers must be addressed; most notably, the cruise Mach number. For commercial subsonic

transport aircraft (e.g. A340, MD11, and B747-400)[11], a cruise Mach number of 0.82 to 0.85 is

typical, yet, the current GRA capability is 0.78. For the DMLA to be a real possibility, this

Mach number must be increased without extreme degradation in aircraft performance.

Additionally, if the GRA cannot achieve a higher Mach number with conventional configuration,

areas of possible advanced technology infusion must be identified. If technologies are needed,

the impact on performance characteristics and system level objectives must be quantified.

To quantify the answers to the above questions, six system-level performance metrics were

identified as objectives for this study:

1. Take-Off Gross Weight (TOGW)

2. Fuel weight

3. Empty weight

4. Wing weight

5. Block time, and

6. Research, Development, Testing, and Evaluation (RDT&E) costs.
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Each objective was minimized by determining the optimum geometric characteristics of the

wing and empennage. These objectives were subject to four constraints:

1. Approach speed (VAPP) less than 150 knots

2. Landing Field Length (LdgFL) less than 4,000 fl

3. Take-Off Field Length (TOFL) less than 10,000 r, and

4. Aircraft unit acquisition price less than 200.0 million dollars (FY92)

For this study, three technologies were identified: advanced propulsive systems, hybrid

laminar flow control on the wing, empennage, and nacelles, and use of composites on the

empennage, nacelles, and fuselage. Each one of these technologies and their modeling will be

explained in detail later.
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3. Technical Feasibility Assessment

The overall approach to this study centered on validating the DMLA concept by first

demonstrating technical feasibility, then assessing economic viability. Separate, specialized GRA

and VLT aircraft were sized and optimized around their respective mission profiles; previous

work into these two aircraft provided the baseline configuration "starting points." Then, DMLA

variants of these aircraft were developed by analyzing the performance of the specialized aircraft

with the more critical mission in the other aircraft's mission. Capability for the resulting DMLA

aircraft to complete both missions, compared to the mission performance of the specialized GRA

and VLT aircraft, then proves technical feasibility. Analysis of the economics of the GRA, VLT,

and DMLA aircraft, and comparison of the results, illustrates economic viability.

3.1. Research Conducted

Research into previous work and existing aircraft was performed to initiate this study. The

work completed on the precursor project s to this study, as detailed previously, was validated in

terms of its applicability to the DMLA concept. Furthermore, the geometric and performance

characteristics of the previously sized configurations were taken to be used as starting points for

the aircraft modeled here. Additionally, this research furnished the previously described mission

profiles, which were consistently used in this effort.

Aside from the New World Vistas, additional configuration information came through

publicly available literatm'e, both from periodicals and on the World Wide Web. (See References

page for details.) Specifics on military design constraints, and shortcomings in existing aircraft,

were provided though this task.

Additional literature was utilized to assess new technology possibilities, as well as alternate

configurations of possible application to a DMLA design. Possible benefits of each were noted,
and described later.

3.Z Tools Used

3. 2.1. FLOPS: Flight Optimization System

FLOPS is a multidisciplinary system of computer programs used for the conceptual and

preliminary design and analysis of aircraft configurations. Developed by the NASA Langley

Research Center, FLOPS consists of several disciplinary modules (such as aerodynamics,

weights, and propulsion), as well as a mission performance analysis module (McCullers 1).

The FLOPS program is most accurate for analyzing conventional, large subsonic transport

aircraft, based on the nature of its disciplinary analysis modules. Each utilizes empirical relations

derived from historical regressions of data for existing aircraft, which are primarily the

conventional, large subsonic type.
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Furthermore, FLOPS contains an internal gradient-based optimizer. Various aircraft design

variables can be parametrically varied to minimize a performance objective function, described
in detail later.

All aircraft sizing and analysis tasks for this study utilized FLOPS. This tool's use is valid for

this study, as each of the aircraft in question is a large subsonic transport.

3.2. 2. ALCCA: Aircral_ Life-Cycle Cost Analvs_

ALCCA is a program used for the prediction of all life-cycle costs associated with

commercial aircraft. This includes manufacturing cost, acquisition price, and all operating and

support costs (both direct and indirect). Developed by NASA-Langley, and further developed by

ASDL, the program also calculates return on investment for the manufacturer and the airline.

ALCCA also captures the effects of such economic variables as passenger load factor, fuel costs,

and aircraft purchase financing (Marx 1).

As part of its ASDL development, ALCCA has been linked with FLOPS, providing the

capability to perform a conceptual aircraft design and immediately determine its life-cycle costs.

The linkage is also valuable through the automatic passing of aircraft design characteristics from

FLOPS to ALCCA for the detailed calculation of manufacturing costs.

Although lacking a military aircraft analysis capability, ALCCA was utilized to analyze life-

cycle costs for all aircraft designed in this study. The method of using ALCCA to analyze the
GRA aircraft is described in detail later.

3.2.3. TCM: Tailored Cost Model

TCM was originally developed by Greg Bell at the McDonnell Douglas Corporation. The

initial version was a series of Louts spreadsheets linked to perform a detailed economic analysis

of military aircraft life-cycle costs. It utilizes cost-estimating relationships based on correlations

against historical data for existing military systems (Osburg 2). TCM was further developed by

Jan Osburg in ASDL, who imported TCM to Microsoft Excel, and then streamlined its execution

(to reduce computational resource requirements) and improved its ease-of-use.

Clearly, TCM is the more accurate of the two cost analysis programs described here for

analyzing the GRA aircraft developed in this study. A lack of experience using TCM, and limited

time in which to gain such experience, prevented its implementation in this study.
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3.3. Description of Baseline Aircraft

3.3.1. Global Reach Aircralq configuration

The GRA used in this concept is derived from a Lockheed-Martin Aeronautical Systems

Company (LMASC) concept for a twin-engine, conventional wing-body-configuration aircraft.

The design incorporates a large, high wing with a T-tail empennage arrangement, as depicted

below in Figure 3.3.1-1. Figure 3.3.1-2 shows the comparison of C-5 Galaxy and GRA
dimensions.

I_ 267.5 ft. [

Figure 3.3.1-1. LMASC GILA arrangement.

i

p---'-- 247.8 ft

C-5 Galaxy

........ T

• _JS

163.6 ff"-_

GRA

Figure 3.3.1-2. Comparison of C-5 and GRA.

The GRA is a new aircraft design capable of transporting 150,000 lb. of cargo over global

distances up to 12,000 nautical miles at subsonic speeds in the vicinity of Mach number 0.8. It

was first conceived to meet these requirements, set forth by the Air Force Scientific Advisory

Board in the New World Vistas. Advanced technologies include natural laminar flow control

(NLFC), composite wings and empennage, and twin IHPTET (Integrated High Performance

Turbine Engine Technology) powerplants. The number of crew include two flight crew, two
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backup flight crew, and two Air Force loadmasters. Table 3.3.1-1 below lists the important
characteristics of the GRA.

Table 3.3.1-1. GRA Detailed Information.

Parameter Value

Fuselage Length (ft)

Wing Span (ft)

Wing Area (sq it)
T/W

TOFL (fi)

LDFL (ft)

:Approach Speed (kts)

TOGW (Ibs)

163.6

267.5

6815.0

0.246

10000

3300

155.0

834901

Fuel Required (Ibs)

No. Flight Crew

Range (nmi)

Payload (lbs)

Cruise Mach no.

425000

4+2

12500

150000

0.80

The aerodynamic performance characteristics for the GRA baseline are shown in Figure

3.3.1-3 for climb and cruise Mach numbers, and take-off and landing in Figure 3.3.1-4. The

GRA baseline cruises at Mach 0.78 at a lift-to-drag ratio of 24.7 t_Sj. As can be seen below, the

drag rise effects substantially reduce the maximum Lift-to-Drag (L/D) ratio as Mach number

increases. This effect must be minimized through optimizing the geometry so as to achieve a

higher cruise Mach number. Once again, the CLmax achieved at take-off and landing were 1.89
and 2.7, respectively.

1.0 ¸

0.8'

0.6.

0.4-

0.2

0.0

_M=.68

_M=.72
+M=.76
.... M=.78
---+--M=.80
----_---M=.82

_M=.84

I I

0.02 0.04
DragCoefficient,G

Figure 3.3.1-3. GRA Cruise Drag Polars

I
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20,

15
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I _ ' _ _ I I ' ' ' ' I _ ' ' ' I

0.5 1 1.5 2 2.5

Lift Coefficient (C t)

Figure 3.3.1-4. GRA L_nding and Take-off Drag Polars

3. 3.2. Very Large Transport configuration

The VLT, as envisioned by industry and government, is an advanced, dual passenger deck,

four-engine advanced subsonic aircraft. The geometric layout of an 800-passenger VLT is

provided below in Figure 3.3.2-1. Figure 3.3.2-2 shows the comparison of Boeing 747-400 and

VLT dimensions. The baseline configurations of the VLT have been recreated at ASDL based on

work performed by Dennis Bartlett at the NASA Langley Research Center.

Figure 3.3.2-1. General VLT geometric layout.
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I
i

_--'-- 231.8 ft

747-400

Figure 3.3.2-2. Comparison of 747-400 and VLT.

I I

I I

I I

I' 'I
VLT

The configurations were sized by FLOPS with an engine technology level representative of 1996

entry into service for the subsonic mission depicted above. The design cruise Mach number was

0.85, consistent with current subsonic transports. The number of crew include two flight crew

and two backup flight crew, plus 38 flight attendants and galley crew. These and other

characteristics, encompassed by the above configurations, are listed in Table 3.3.2-1.

Table 3.3.2-1. VLT Detailed Information.

Parameter Value

Fuselage Length (ft) 250.0

Wing Span (fi) 255.0

Wing Area (sq ft) 5934.0

r/w 0.257

rOFL (n) ' 11000

LDFL (fO 5500

Approach Speed (kts) 150.0

TOGW (lbs) 914039

Fuel Required (lbs) 334148

No. Flight Crew 4 + 38

Range (nmi) 7500

Pax. Cap. 800

Cruise Mach no. 0.85

Originally, NASA-Langley and ASDL developed three VLT variants, corresponding to three

passenger capacities (600, 800, and 1000). Figure 3.3.2-3 below depicts the geometric

differences between each of these aircraft and the Boeing 747-400. Sized to identical constraints,

the 800-passenger VLT proved to be the most economically viable, so this configuration was

selected for the DMLA study (Kirby 37).
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Figure 3.3.2-3. Comparison of geometries of VLT variants.

3.3.3. Description of Powerplant Models

The twin-engine aircraft in this study used the engine model developed by LMASC for the

above GRA configuration. Starting with a General Electric Cf6-80E engine, nominally rated at

70,000 lb. of thrust, LMASC first scaled the engine to the required 105,000 lb. of thrust. They

then assumed a 7% overall improvement in specific fuel consumption (sfc) from IHPTET

technologies, resulting in a nominal cruise sfc of 0.553.

The four-engine aircraft in this study use an engine "deck" file created by the NASA Lewis

Research Center. The modeled engines, nominally rated at a sea-level-static thrust of 77,500 lb.,

assume 1995 technology levels. For consistency with the twin-engine aircraft powerplant, the

engine was modified to 1996 technology levels within FLOPS. Specifying a 1996 level of

technology forces FLOPS to improve the engine component efficiencies over their 1995 levels.

3.3.4. Modification of Baselines

As stated previously, this study is only the first step in the entire DMLA research effort. As

such, technical feasibility of the DMLA concept is illustrated by examining purely conventional

aircraft variants. In other words, all aircraft developed during this study embody 1996 technology

levels - this stage does not consider future advanced technologies. Thus, the above GRA baseline

model was "stripped" of its enabling technologies, namely its natural laminar flow control and

composite materials usage. NASA Langley provided a conventional VLT baseline, so no such

modifications were necessary.

Furthermore, to add a dimension of comparison among aircraft, a four-engine GRA aircraft

and twin-engine VLT aircraft were created. In FLOPS, this amounts to simply using the settings

for number of engines, engine thrust, engine weight, engine wing locations, and the engine

definition file location from the input from one aircraft to another. In other words, these values

for the twin-engine GRA were used in creating the input for the twin-engine VLT; likewise, the

values for the four-engine VLT were used in creating the input for the four-engine GRA.
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3.4. Design of Specialized GRA and VL T Aircraft

As mentioned previously, this research problem seeks to demonstrate technical, as well as

economic, feasibility of the DMLA concept. If a DMLA aircraft is not technically feasible, then

its economics have no bearing. For this reason, this study addresses performance issues first, and

cost issues second. As a result, GRA and VLT aircraft sizing occurred through the performance

optimization of the baseline aircraft described above. The results carried forth into the initial

development of a DMLA.

3. 4.1. Aircraft Optimization

The aircraft design optimization was conducted using the FLOPS internal optimizer, which

minimizes the following objective function (McCullers 17):

OBJ= obgx GW + off x FW + obgx (Mx L//D)+ ofrx RNG+ ofcx COST + osfcx SFC+ ofnox x NOX

The terms of this equation are defmed in Table 3.4-1 below.

Table 3.4-1. Responses and Weighting Factors in FLOPS Objective Function.

term value weighting factor

GW gross weight obg

FW fuel weight off

M cruise Mach no. ofm

L/D lift-to-drag ratio ofm

RaNG design range ofr

COST life-cycle cost ofc

SFC engine specific fuel consumption osfc

NOX NOx emissions ofnox

To minimize this function, FLOPS optimizes the following parameters within a user-specified

range of values: gross weight, wing aspect ratio, engine thrust (or thrust-to-weight ratio), wing

area (or wing loading), wing taper ratio, wing sweep angle, and wing thickness-to-chord ratio.

The last four scale factors in Table 3.4-1, oft, ofc, osfc, and ofnox, were each set to zero.

Each aircraft's mission profile specifies a fixed range, so this parameter was not varied. Aircraft

costs were later analyzed for the resulting optimized aircraft; so this figure was not included in

aircraft optimization. Engine SFC is fixed by the use of predef'med engine models, eliminating

this parameter from optimization. Furthermore, off was also set to zero, based on the assumption

that fuel weight would be captm, ed in the optimization of aircraft gross weight; thus, fuel weight

was removed from the optimization process.
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The remaining weight factors were assigned values based on the assumed desires of the

military and commercial customers. In either case, it is desirable to maximize cruise Mach

number and lift-to-drag ratio, while minimizing takeoff gross weight; thus, the values for these

weight factors are assigned based on the relative importances of these quantities. For all GRA

aircraft, ofm = 0.33 and off = -0.66 (the negative sign signifying a quantity to be maximized). As

described previously, the military seeks to replace its existing aging transports because of their

slow cruise speeds and poor aerodynamic performance, more so than due to their gross weight.

Thus, cruise Mach number and lift-to-drag ratio were given a greater weighting than gross

weight. For all VLT aircraft, ofm = 0.66 and off = -0.33. Airport limitations constrain the gross

weight of a commercial transport, somewhat shifting the design emphasis towards this effect.

Furthermore, NASA-Langley originally sized the aircraft for a commercially acceptable cruise

Mach number; thus, greater weighting was given to takeoff gross weight.

Tables 3.4-2 and 3.4-3 below list the design parameters, initial values, and ranges used to

optimize the GRA and VLT aircraft, respectively. The initial values were taken from the results

for the original, unoptimized baseline aircraft. The ranges were set to capture as wide a range of

performance results as possible, while still reflecting physically sensible values.

Table 3.4-2. GRA Design Parameters and Ranges.

Parameter

Gross Weight (lbs)

Thrust/eng. (lbs)

Aspect Ratio

Wing Area (sq ft)

Taper Ratio

Wing LE Sweep (deg)

Thickness/Chord (avg)

Cruise Math no.

Cruise Altitude (ft)

Initial

900000

110000

9.5

6800.0

0.25

25.0

0.11

*0.78

45000.0

Minimum

800000

85000

8.0

5500.0

0.21

18.0

0.08

0.65

25000.0

Maximum

1000000

135000

11.0

8100.0

0.28

32.0

0.13

0.86

50000.C

* O.74for 2-engine GRA

Table 3.4-3. VLT Design Parameters and Ranges.

Parameter

Gross Weight (lbs)

Thrust/eng. (lbs)

Aspect Ratio

Wing Area (sq ft)

Taper Ratio

Wing LE Sweep (deg)

Thickness/Chord (avg)

Cruise Math no.

Cruise Altitude (ft)

Initial

12500001

160000

8.5

8100.0

0.31

34.5

0.08

0.80

45000.0

Minimum

900000

135000

7.0

6500.0

Maximum

1350000

185000

10.0

9000.0

0.28

29.0

0.06

0.65

25000.0

0.34

40.0

0.10

0.86!

50000.C
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L

Note that for the GRA configuration, FLOPS could size the twin-engine GRA configuration

successfully only if a lower starting Mach number was given. This is a limitation in the FLOPS

optimizer encountered in this study, to be discussed later. Furthermore, the GRA aircraft required

lower starting Math numbers than the VLT aircraft. The original sizing, which resulted in

aircraft capable of Mach 0.80 cruise speeds, assumed natural laminar flow control; the additional

aerodynamic drag caused by removal of this technology reduced the aircraft cruise speed.

The results of this sizing will be given in comparison with those for the DMLA aircraft later,

in the "Results and Conclusions" chapter.

,3. 4. 2. IdentOTcation of Critical Sizing Mission

The results of optimizing the specialized GRA and VLT aircraft became the means by which

the more critical of the two missions could be identified. This mission would yield an aircraft

with a higher cruise Math number, greater range, greater payload, and a larger amount of fuel

required. The critical mission becomes critical to the sizing of a DMLA, as it is such a mission

for which any DMLA must be optimized.

This line of reasoning emerges from a common-sense observation of the problem. Between

the GRA and VLT aircraft, that with greater range, speed, payload capacity, and fuel capacity

should be able to perform a mission requiring a slower, shorter-ranged aircraft with less payload
and fuel capacity.

By this rationale, the VLT mission was found to be the more critical, in both the twin-engine

aircraft and four-engine aircraft cases. This is shown below in Tables 3.4.2-1 and 3.4.2-2.

Table 3.4.2-1. Twin-Engine Aircraft Mission Criticality.

Parameter

Range (nmi)

Payload (lbs)

Speed (M)

Fuel Req. (lbs)

GRA

7500

150000

0.758

326724

VLT

7500

167200

0.770

474553

Table 3.4.2-2. Four-Engine Aircraft Mission Criticality.

Parameter

Range (nmi)

Payload (lbs)

Speed (M)

!Fuel Req. (lbs)

GRA

7500

150000

0.787

345945

VLT

7500

167200

0.778

456250
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3.5. DMLA Creation

Since the VLT mission is more critical from an aircraft sizing standpoint, then a DMLA must

be optimized for this role first. The process began by modifying the resulting VLT configuration

in FLOPS with some of the necessary attributes of a GRA. Since military transport aircraft

contain a high-wing configuration (to allow cargo handling equipment to drive under the wings

(Wilkinson 29)), and therefore a T-tail empennage arrangement, a DMLA must also possess a

high wing and T-tail. (Note that FLOPS models only the latter of these design characteristics.)

Also, Air Force regulations limit the wing structural load factor to 2.25, much less than the 3.75

load factor employed by commercial transports; this limits the DMLA's wing load to 2.25 as

well. Otherwise, the VLT's attributes are retained in the DMLA configuration, with all other

FLOPS inputs for the VLT held identical. (In particular, the same optimized variables and ranges

input for the VLT were used in modeling the DMLA to achieve similar performance.) The

resulting VLT variant of the DMLA was then optimized following the same approach as for the

specialized VLT.

Thus, a VLT variant of the DMLA was modeled, but a GRA variant had yet to be created.

This aircraft was modeled starting with the results obtained for the VLT variant's creation. At

this point, however, the configuration was "frozen" - that is, all optimization features were

removed, in order to retain the DMLA geometry. The design variables previously optimized

were fixed at those resulting from the VLT variant's optimization, and the configuration was run

in FLOPS in an analysis-only mode. Since this mode still results in the recalculation of some

parameters, however, as many of these parameters needed to be fixed as well. In addition to the

design variables, all component weights were fixed to their VLT variant values. The exception

was fuselage weight, which differed due to the following additional modifications. First, the

previous GRA study yielded an aircraft requiring a fuselage 164 ft. in length, far less then the

250 ft. length of the VLT fuselage; the study revealed that the 150,000 lb. payload could easily

be carried in a fuselage of this size. (This fleshes out the assumption that on a DMLA assembly

line, fuselage plugs would be implemented to lengthen a DMLA to the VLT-variant size.)

Further modifications of the FLOPS input include:

• Setting of passenger capacity to zero.

• Setting of flight crew number to six.

• Specifying a main-deck cargo floor, instead of a passenger cabin floor.

• Replacement of VLT mission definition with GRA mission.

• Fixation of wing fuel capacity to VLT variant value. Since both variants must have

identical components, the wings - and therefore wing fuel tanks - must likewise match.

• Removal of fuselage fuel tanks, as all military transport fuselage volume is devoted to the

aircraft cargo bay.

This last point created some difficulty in creating the DMLA aircraft. The VLT variant needed to

be sized with sufficient wing fuel capacity for the GRA variant to complete its mission. When

Aerospace Systems Design Laboratory Page 24



DMLA Study, Year 2 Contract NAG-l-1662

the GRA was analyzed and insufficient fuel capacity resulted, the VLT was then resized with

higher initial values of wing area and thickness to accommodate the additional fuel volume. The

GRA was then reanalyzed, and the wing geometry refined until the GRA excess fuel capacity
was minimized.

With these modifications made to the FLOPS input, the GRA variant of the DMLA could

then be analyzed. The results of the DMLA design will be given in comparison with those for the

specialized aircraft later, in the "Results and Conclusions" chapter.
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4. Economic Feasibility Approach

With all aircraft sized, demonstration of the DMLA concept's economic feasibility remained.

This entailed the analysis of all resulting aircraft in the ALCCA program. In all but a few

instances, the economic variables and their "most likely" values used by the Boeing 747-400

project team of the AE4353 Design for Life-Cycle Cost class, last offered in the Fall of 1996,

were utilized in this analysis. The same metrics for economic viability were used as well. (The

work performed by the 747-400 team is referenced at the end of this report.)

4.1. Cost Analysis for all VL T Aircraft

Since ALCCA predicts the life-cycle costs for commercial aircraft, its use to analyze the

economics of VLT aircraft is unquestionably justified. In line with the work performed for the

AE4353 class project, the values and assumptions given in Table 4.1-1 formed the basis of the

VLT aircraft economic analysis:

Table 4.1-1. VLT Economic Values and Assumptions.

Value Setting Value
Dollar Year

Production Year

Airline ROI

Manufacturer's ROI

Econ. Range (nmi)

Fuel Cost (S/gallon)

Hull Insurance (% ofacq, cost)

Engineering Labor Rate ($/hr)

Tooling Labor Rate ($/hr)

Maintenance Labor Rate ($/hr)

Income Tax Rate

900for DMLA

Setting

1992 Engine Learning Curve 100%

1997 Turnaround Time (hrs) 1.5

9% Inflation Rate 6%

12°A Econ. Life (years) 20

5160 Residual Value (% ofacq, cost) 0.10

0.65 Utilization (hrs/yr) 5000

0.35 Production Quantity *549

65 Load Factor 65%

55 Learning Curve 80%

19.5 Downpayment 20%

34% Financing 8%

Some of these figures are a bit optimistic: airlines may accept a 10% retum on investment;

flights abroad where fuel costs are higher could increase the average fuel cost to over one dollar

per gallon; and airlines often do not provide a down payment when purchasing new aircraft.

However, as for the GILA, analysis of each VLT aircraft included these same assumptions,

validating the comparison of these results.

Tracking the same metrics as used in AE4353 allowed for the assessment of affordability.

These include aircraft acquisition cost (ACQ), required average yield per revenue passenger-mile

($/RPM), direct operating cost per trip (DOC), indirect operating cost per trip (IOC), and total

operating cost per trip (TOC). The "Results and Discussion" chapter includes the VLT results for

these metrics, and their comparison as a gauge of economic feasibility.
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4.2. Cost Analysis of GRA Aircraft

Modeling military aircraft economics in ALCCA far exceeds the program's validity. The

mathematical relations in ALCCA were derived from commercial aircraft statistics. However, by

modeling all GRA aircraft as commercial cargo planes, and applying the same assumptions in

ALCCA to all GRA aircraft, then their economics can be compared against each other with
confidence.

Starting with the same ALCCA values used for the VLT aircraft, some obvious adjustments

were made to attempt improvement of the ALCCA models for the GILA aircraft. First, the

number of passengers was set to zero, to tap into ALCCA's ability to model commercial cargo

aircraft economics - the closest model to that for military transports. Second, the corporate tax

rate was also set to zero, as the military does not owe income tax to the government for its

operations. Third, the airline return on investment routine in ALCCA was disabled, as the

military does not monetarily profit from its operations. Fourth, the full 7500 nautical mile design

range was input as the economic range, based on the assumption that the military will operate its

aircraft at or near their full design capability. Finally, the production quantity was set to 351.

This is the combined total of all C-5 and C-141 aircraft in active service (C-5 2, C-141 2); it is

assumed that the Air Force will replace all of its front-line C-5s and C-141s. All other

assumptions and values from that for the VLT aircraft were kept, resulting in the list of economic

variable settings and assumptions given in Table 4.2-1.

Table 4.2-1. GRA Economic Values and Assumptions.

Value Setting

Dollar Year 1992

Production Year 1997

Airline ROI N/A

Manufacturer's ROI 12%

Econ. Range (nmi) 7500

Fuel Cost (S/gallon) 0.65

Hull Insurance (% ofacq, cost) 0.35

Engineering Labor Rate ($/hr) 65

Tooling Labor Rate ($/hr) 55

Maintenance Labor Rate ($/hr) 19.5

Income Tax Rate 0%

900for DMLA

Value

Engine Learning Curve

Turnaround Time (hrs)

Inflation Rate

Econ. Life (years)

Residual Value (% of acq. cost)

Utilization (hrs/yr)

Production Quantity

Load Factor

Learning Curve

Downpayment

Financing

Setting

100%

1.5

6%

20

0.10

5000

"351

65%

80%

20%

8%

The same responses were tracked, with the exception of $/RPM, for the simple reason that no

(revenue) passengers would be embarked on any GRA. For this same reason, summation of the

components of IOC was performed manually; IOC includes components related to passenger

cabin servicing, which ALCCA computes by distributing over all passenger seats, of which there

are none on the GRA aircraft. Thus, the passenger-service related components of IOC were

infmite, resulting in an infinite overall IOC. Thus, the remaining components - flight servicing,

aircraft maintenance, cargo handling, and ground terminal fees were manually summed.
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The "Results and Discussion" chapter includes the GRA results for the remaining metrics,

and their comparison as a gauge of economic feasibility.

4.3. DMLA Considerations

The driving force behind the DMLA's economic viability is the impact on affordability

brought about through the development of single aircraft, instead of two specialized systems,

along with the affect of a longer production run of a single aircraft versus two smaller production

quantities for two distinct aircraft.

The primary method for affecting this in ALCCA is to combine the proposed GRA and VLT

production quantities, for a total of 900 aircraft (549 VLT variants plus 351 GRA variants). This

is largely accurate, but overlooks a subtle point in the reality of DMLA production. Given that

the VLT and GILA differ somewhat, the following finer points of the added costs of DMLA

manufacturing were overlooked in this study:

• cost of fuselage plug insertion to create a VLT aircraft

• cost of altering the aircraft interior on the assembly line to adapt it for the given variant's
mission

• cost of configuring aircraft flight decks for avionics packages appropriate to the given
variant

For this reason, the results for the DMLA acquisition costs are slightly optimistic. Again,

these are finer points to be addressed in future studies; the impact of their neglect is slight at
most.
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5. Aerodynamic Investigation Approach

To accomplish the above objectives, a method for execution was identified. The elements

composing the Robust Design Simulation (RDS)[12] method developed by ASDL were adopted.

One key element within RDS is the Response Surface Methodology (RSM). RSM is a method

which allows the development of Response Surface Equations, say system level metrics or

constraints, as functions of important design parameters. An overview of the theory behind this
method is described below.

5.1. Response Surface Methodology

RSM I12] is one of the key elements comprising ASDL's RDS method. It is based on a

statistical approach to building and rapidly assessing enormous empirical models. By a careful

design and analysis of experiments or simulations, the RSM seeks to relate and identify the

relative contributions of the various input variables to the desired system response, e.g., TOGW,

VAPP, block time, etc. In most cases, the behavior of a measured or computed response is

governed by certain laws which can be approximated by a deterministic relationship between the

response and a set of design variables. The exact relationship between this response and the

design variables is either too complex or unknown and an empirical approach is necessary. The

strategy employed in such an approach is the basis of the RSM. In this study, a second degree
model in k-variables is assumed to exist for each metric and constraint. This second-order

polynomial, called a Response Surface Equation (RSE), for a response, R, can be represented as:

k k k-I k

R= bo + )--'_bix i +_biix_ + )-"_-'_bijxix j (1)
i=l i=l i=l j>l

where: bi are regression coefficients for the linear terms; bii are coefficients for the pure

quadratic terms; bij are coefficients for the cross-product terms (i.e. second-order interactions); x_,

xj are the design variables; and x_xj denotes the interactions between two design variables. Once

equation (1) is derived, it can be used in lieu of more sophisticated, time consuming codes to

predict and optimize the response of a sub-system or the entire system. The "optimal" settings

for the design variables are identified by finding the maximum or minimum of this equation.

The response equation can then be validated from the original code by performing a confirmation

test with the optimal settings of the design variables. Since the RSE is essentially a regression

curve, a series of experimental or computer simulation runs (or cases) need to be performed to

obtain a set of output data for the varying inputs.
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5.2. Design of Experiments

Typically, one wants to obtain the RSE as a function of several variables, including second-

order interactions. To evaluate all possible combinations of variables at two or three levels, an

excessive amount of cases would need to be tested. In fact, if seven variables, as seen in Table

5.2-1, are to be tested at three levels (two extremes and a most likely value) for all combinations,

a total of 2,187 cases would need to be evaluated. This type of evaluation is called a full

factorial analysis. This type of analysis would be absurd if a detailed analysis code such as a

structural Finite Element Method or a Computational Fluid Dynamics code was needed.

Therefore, to reduce the amount of runs needed to analyze a response, a statistical method called

the Design of Experiments (DOE) is employed.

Table 5.2-1. Number of Cases Needed to Perform a Response Surface Analysis

Type of Equation For n=7
Evaluation Variables

Full Factorial 3n 2,187
............................ . ..................... _ ......................

Central Composite 2n+2n+l 143
.........................................................................

Box-Behnken 62

D-Optimal (n+l)(n+2)/2 36

DoEs are statistical techniques which allow for a portion of the full factorial to be analyzed in

a structured, predefined manner. A DoE will yield a table of input variable combinations that

will capture all first and second-order effects due to changes in the design variables t_41. Table

5.2-2 displays an example of a DoE table for three variables at two levels, "-1" and "+1",

representing the extreme (minimum and maximum) values of the range of interest. Each row

represents a run for the given variable (Xl, x2, and x3) level settings and the last column denotes

an output, or response, of some experimental or simulation code.

The actual combination of cases that need to be tested can be determined from a textbook, or

as in the case here, through the use of a statistical analysis program called JMP t_51. JMP not only

constructs the tables, but also identifies confounding structures and carries out all necessary

analyses once the responses are provided from the simulation runs. The same DoE approach can

be utilized for variables at three levels yet requires more runs to obtain the same information. A

note should be made that through the use of statistical methods, such as the DoE, the amount of

necessary variables for analysis can be reduced for the same number of runs.

In order to reduce the number of variables, another DoE is needed to identify the contribution

of each originally considered variable to the response of the system. This test is commonly

referred to as a screening test. The screening test is a two-level fractional factorial DoE testing

the fit of a linear model. This is achieved by considering only the main effects of each variable,

i.e., no interactions. This method allows for a rapid investigation of many variables so as to gain

an initial understanding of the problem.
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Table 5.2-2. DoE Example for 23 Factorial Design

Run Factors Response

xl x2 x3

1 -1 i -1 i -1 yl
I- I-

2 +1 i -1 i -1 y2

3 -1 i +1 .: -1 y3

4 +1 ,: +1 ,: -1 y4
........................ l- ............ I- ......... _ ................

5 -1 i -1 i +1 y5
........... - ............ IP ............ I- ......... _ ................

6 +1 : -1 ,: +l y6
........... P ............ I" ............ I" ......... _ ................

7 -1 i +1 i +1 y7
........... b ................................. I- I- -- ................

8 +1 i +1 :, +1 y8
I I

The JMP program can once again be utilized for the statistical analysis. This analysis yields

a Pareto plot of the most significant contributors. The Pareto plot is based on the Pareto

principle which states that 20% of the variables in a given system control 80% of the variability

in the dependent variable t]6]. By pre-def'ming a desired response fidelity, the actual values

needed can be easily selected from the plot. Typically, seven to eight variables are adequate

enough to capture 80% to 90% of the response. The variables not contributing a significant

amount to the response can be fixed at their most likely values for the remainder of the study.

After identifying the variables which will form the RSE, a design must be selected from the

list of potential candidate methods presented in Table. For the purpose of this study, the face-

centered Central Composite design was used to develop the RSEs. The face-centered Central

Composite design is a fractional factorial with axial points located on the face of the cube I13]. In

addition, since all runs will be conducted with an analytical tool, no experimental error occurs.

Therefore, a statistical environment without any error can be assumed. Consequently, all

deviations from the predicted values are true measures of a model fit, i.e., a lack of fit of the

assumed quadratic equation representation of the response. A lack Of fit in the model expresses

how well the model represents the true response. A small error in fit is indicative of higher Order

interactions that are not accounted for in the model. If the error between predicted and actual

responses is too large, it may be necessary to create a new model which accounts for those

interactions or to assess the validity of the analysis tool.

5.3. Prediction Profiles

Once the RSEs have been generated, the program JMP also allows the development of

prediction profiles t_3]. Simply stated, the prediction profiles are a series of graphs for each

variable which represent the relative effect of each variable on the response. The prediction

profiles are generated by JMP via the underlying response surface equations. The importance of

the prediction profiles is that they allow a visual interpretation of the effects of the variables on

the response. By examination of the prediction profiles, one can determine the variables of
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strongest importance, the variables of least importance, the direction (increase or decrease) of

change of response for a direction of change of variable, and the rate of change.

Interpretation of the prediction profiles is relatively straight forward. The slope of the line is

the key. A positive slope means that for an increase in the variable a corresponding increase in

the response value will occur. The opposite happens with a negative slope, i.e., for an increase in

a variable value, a decrease in response value occurs. The value of the variable's slope is related

to the magnitude of the increase in the response. In addition, the curvature of the variable's effect

is important. A linear slope implies that an equal increase in variable will result in an equal (in

relation to the slope value) change in response value; however, a non-linear slope implies the

potential for diminishing/increasing returns. This is very important in the process of attempting

to change a response value via a change in variable. Visually, one can analyze whether or not

and/or to what level a change in variable level is cost effective. Finally, a horizontal or near

horizontal slope is interpreted as having a minimal effect on the response value.

In a computer environment via JMP, the prediction profiles may be altered in an interactive

manner. This tool allows the designer to alter the variable values in real time and observe the

change in response. A quick analysis will tell the designer if changing the appropriate variable

values can actually change the response to the desired value and if possible, which different

variables need to be changed to what range of values. The real advantage is in the fact that the

process occurs instantaneously without the need for complicated re-analysis due to the

underlying response surface equations.

There is a function in the prediction profiles option that translates a multi-objective problem

to one objective problem in the form of a "Desirability" function. This idea was pioneered by

Derringer and Suich in 1980 °7_. Consider the prediction profile in Figure, there are 10 different

objective functions defined on the left. On the fight of the figure is the desirability of each

objective. The slopes of each individual objective shows the direction of highest desirability.

For example, a negative slope implies minimization, while a positive slope implies

maximization. As is evident, minimization of the individual objectives is the goal. Yet, the

VAPP, LdgFL, TOFL, and the Acquisition price are constraints. For the constraints shown, the

mean value of the desirability is set to zero at the constraint value and then minimized as the

desirability increases to one. For the VAPP constraint, no values in the DoE table ever violate

the limit of 155 knots; hence VAPP was subject to minimization. JMP will determine the most

desirable analysis case in the DoE table which will maximize the desirability function based on

the desirability of each objective defined on the fight. Higher is always better for the desirability
function value shown on the bottom left.

One of the main aspirations of this study was to maximize the cruise Mach number, VCMN.

As shown in Figure 5.3-1, the maximum desirability resulted in the mid-value of the Mach

number. The user has the option of changing this result, as shown in Figure 5.3-2. Yet, as is

evident, the value of the desirability function decreases from 0.696955 to 0.660988. The user

would then have to determine the trade-offs for a high desirability (that is, optimal solution) as

compared to the study purpose of a high Mach number.
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Figure 5.3-1. Desirability Option on JMP
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Figure 5.3-2. Adjusted Desirability Option in JMP
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5.4. Analysis Tools and Methods

The execution of this study was dependent upon identifying aerodynamic analysis tools

which could accurately capture the physics associated with a military or commercial transport

aircraft cruising at high subsonic speeds. Furthermore, to incorporate the high number of

executions required by the Response Surface methodology, automated analysis methods were a

necessity. The following describes the analysis tools identified; four possibilities for execution;

and the rational for the method utilized in this study; and the automation procedure for the

analysis.

5.4.1. Analysis Tools

Various aerodynamic tools exist in industry which are capable of predicting the

aerodynamics of subsonic transport aircraft. For an initial conceptual level trade study, an

aerodynamic analysis based on potential flow theory is usually preferred. The tools have low

fidelity but are time efficient. Typically, these codes solve the flow characteristics based on

vortex-lattice paneling methods or grid structures, where the latter has higher fidelity but is more

costly to execute. ASDL has many of these public domain codes which could be used for this

study. These tools include AERO2S t21,22,23J,BDAP [24'25'261,FPS3D E27J,and VORLAX t281. Each of

these tools has a range of validity and application and requires different levels of user interaction

and input development.

First, AERO2S is a subsonic 2-D vortex-lattice paneling method which is capable of

analyzing lift induced drag of a wing and a second 2-D surface. AERO2S simulates 3-D

configurations with an effective camber of the wing and second surface. A fuselage may be

simulated with an effective camber. AERO2S can also handle leading and trailing edge flaps and

is an industry standard for low speed and subsonic analysis. Paneling of the surfaces is achieved

by specifying a number of spanwise slices along with panel element aspect ratios.

BDAP is a linearized method typically used for supersonic design and analysis. Yet, BDAP

contains a module which will determine the subsonic profile drag characteristics of arbitrary

shapes using turbulent fiat plate theory.

FPS3D is a 3-D full potential flow solver. It requires an unstructured grid rather than panels.

FPS3D is capable of accurately and efficiently predicting the aerodynamics of complete aircraft

configurations at subsonic, transonic, and supersonic speeds. For the grid generation, FPS3D

requires unstructured grids generated from FELISA t291.

VORLAX is a vortex lattice code that is capable of both supersonic and subsonic analysis.

VORLAX can analyze both asymmetric and symmetric designs, making it applicable to

unconventional geometries. Fusiform bodies may be modeled, as well as thickness as biplanar

patches. VORVIEW I3°1is a graphical preprocessor to VORLAX. It enables the user to use a

hermite file as the geometry definition input. VORVIEW then automatically slices the planform

view of the model and creates the VORLAX input file. For vertical paneling, the slices must be

added manually.
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5. 4. 2. Possible Analysis Methods

Based on the definition of the analysis codes above, three methods for execution were

explored. Each method begins with the geometric modeler, RAM, then proceeds to analyze the

configuration aerodynamics, and then feeds FLOPS the drag polars needed to size the aircraft.

The methods are:

1. RAM_BDAP_AERO2S_FLOPS

2. RAM---_VORVIEW---_VORLAX---_FLOP S

3. RAM---_FELISA--_FPS3D---_FLOPS

Each one of these methods were investigated to determine if the actual analysis codes, i.e.

AERO2S, VORLAX, and FPS3D, would efficiently capture the compressibility effects of high

subsonic flight. This criteria was a necessity for this study since a primary objective was to

increase the cruise Mach number for military and commercial compatibility. The baseline GRA

was modeled in RAM and then analyzed by AERO2S for various Mach numbers. Figure 5.4-1

shows the drag polars generated by AERO2S for the GRA baseline. As compared to the actual

drag polars in Figure 3.3.1-3, AERO2S is not capturing the drag rise effect of increasing Mach

number. This inability to model the physics automatically eliminated AERO2S as the subsonic

cruise analysis codes. VORLAX was also eliminated due to the fact that the analysis is based on

theories similar to AERO2S. It does not capture compressibility effects.
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Figure 5.4-1. AERO2S Analysis of GRA Baseline
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The only remaining option was method 3, RAM--->FELISA--->FPS3D--->FLOPS. As stated

previously, FPS3D could capture the compressibility effects desired. Even though the analysis

would be more costly in set-up and execution time, the results would be valid. Yet, at the time of

this study, the grid generation code, FELISA, required by FPS3D, had not been acquired.

Consequently, FPS3D was also eliminated.

One final option was left to be explored and was considered as a last resort. Within FLOPS,

there exists a module capable of analyzing the aerodynamics of a configuration. The analysis

module is based on empirical relationships developed from current subsonic transport aircraft. It

computes profile drag, induced drag, and accounts for compressibility based on a regression

analysis of current transport performance data. As seen in Figure 5.4-2, FLOPS adequately

captured the compressibility effects for the baseline configuration. At Mach 0.84, the drag rise

effect is evident whereas it is non-existent in Figure 5.4-1. As compared to the actual drag polars

in Figure 3.3.1-3, FLOPS over predicted the total drag. For example, the actual maximum Lift-

to-Drag ratio at a cruise speed of Mach 0.78 is 24.7 and FLOPS predicted a value of 22.9 which
was 7.2% less than the actual.
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Figure 5.4-2. FLOPS Drag Polar Analysis of GRA Baseline

As a consequence of the investigation of the possible methods for execution, the intemal

aerodynamic analysis within FLOPS was the only alternative. This result simplified the overall

analysis. This simplification had positive and negative aspects. Considering that the objectives

of this study are system level metrics resulting from a FLOPS analysis, the amount of automation
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required is reduced. Yet, the study gravitates from accurate representation to one of

approximation.

Upon further investigation of the capabilities of the FLOPS aerodynamics module, it was

discovered that the low speed characteristics (TOFL, LdgFL, and VAPP) were dependent upon

externally provided drag polars. The actual aerodynamic analysis performed on a configuration

did not translate to the take-off and landing module which calculates TOFL, LdgFL, and VAPP.

This information would have to be provided from an external source. AERO2S and BDAP were

utilized for this purpose. Eventhough AERO2S can not predict high subsonic Mach numbers, it

has been proven to be quite valid for low speed analysis. Since AERO2S only predicts induced

drag, the profile drag ability of BDAP was used. The combination of these two codes would

allow for accurate low speed aerodynamic information for the determination of take-off and

landing performance metrics.

5. 4. 3. Technology lnfusion Modeling

After establishing the method of analysis, it was necessary to identify if various possibilities

for technology infusion could be modeled or simulated. Based on the Mobility Volume of the

New World Vistas TM, three areas of new technologies were identified. Those areas include:

improved propulsive efficiency (i.e., post-IHPTET), better aerodynamic performance via

advanced wing design and innovative configurations, and light-weight, low cost advanced

materials. Each of the three technologies could be simulated within FLOPS/ALCCA t2°,3_1. The

post-IHPTET engines could be simulated by using an external engine deck which reflected the

thrust and fuel flows of the advanced technology. The aerodynamic performance could be

enhanced by including flow control techniques, such as Hybrid Laminar Flow Control (HLFC).

The HLFC technology can be simulated in FLOPS by assuming a percent of laminar flow over

various surfaces, such as the wing, empennage, nacelles, and fuselage. And finally, the light

weight advanced materials can also be fabricated through constant factors which reduce the

calculated component weights.

As stated previously, the GRA baseline included an IHPTET engine and laminar flow over

the wing and empennage. In addition, the GRA baseline described in Ref 18 correlated the

component weights through the use of weight factors. Therefore, to simulate the various

technologies state above, the original GILA baseline was stripped of these technologies to yield a

new "clean" baseline configuration. Each technology that was added yielded a deviation from

that baseline. Hence, the effects of adding new technologies could be quantified from an aircraft

performance and system level metrics benefit point of view. As a summary, Table 5.4-1 defines

the three technologies added to the "clean" version of the GRA and eight configurations resulted.

Furthermore, the aerodynamic analysis was performed on each of the eight configurations, and

optimal solutions were obtained for each. These different configurations provided the feasible

space for the DMLA study.
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Table 5.4-1. GRA Configurations Definition based on Technology Infusion

Configuration Technologies Applied

1 Baseline with IHPTET engine
.................................................................................

2 IHPTET engine and HLFC
.................................................................................

3 IHPTET engine and composites
........................ . ........................................................

4 IHPTET engine, HLFC, and composites

5 Baseline with post-IHPTET engine
........................ I" ........................................................

6 i post-IHPTET engine and HLF

7 i post-IHPTET engine and composites

8 ! post-IHPTET engine, HLFC, and composites

The technologies stated in Table 5.4-1 were simulated in FLOPS/ALCCA through various

parameters. Table 5.4-2 lists the various parameters used and the values for the baseline and the

technology. The introduction of the post-IHPTET engines was straight forward. In lieu of

looking for the IHPTET engine deck, the post-IHPTET engine deck was inserted. The

component weighting factors for the original GRA composed of increasing the weights

calculated by FLOPS so as to correlate data. Therefore, composite use was simulated by

allowing FLOPS to calculate the weights with no factors included. When the four factors shown

(FRFU, FRHT, FRVT, and FRNU) were set at values of 1.0, the TOGW could be reduced by as

much as 150,000 lbs. This was felt to be a reasonable reduction in weight through use of

composites. The HLFC simulation required more variables. The HLFC technology values

shown are indicative of the original GRA baseline before all technologies were removed, except

for the CLmax at take-off and landing. As noted in the discussion of the internal aerodynamic

ability of FLOPS, low-speed aerodynamic information is required from an off-line analysis. The

tools utilized for this purpose, AERO2S and BDAP, cannot simulate the effect of HLFC.

Therefore, a simulation of HLFC came through the effect of increasing the maximum lift

obtainable through controlling the boundary layer. Since no data for HLFC impact on maximum

lift was available, an analogy was made to the effects of circulation control on wing surfaces at

take-off and landing. Various studies have shown that CLmax at take-off and landing can be

increased by as much as 30% for circulation control airfoils. An assumption was made that the

NLF characteristics of the HLFC wing could improve the CLm_xat take-off and landing. Hence

,the CLm_x at take-off and landing were increased by a conservative amount 11% and 14.8%,

respectively.

The HLFC modeling in FLOPS was not completely accurate. Any time that blowing or

suction is applied to a surface, the energy required to perform such a task is extracted from the

engine. For this study, an external engine deck was used, not the internal capabilities of FLOPS.

Therefore, the degradation in engine performance due to compressor bleed to operate HLFC was

not modeled. An attempt was made to internally generate an engine, but the attempt failed to

accurately model the IHPTET and post-IHPTET technologies.
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Table 5.4-2. Technology Simulation in FLOPS

Technology FLOPS Baseline Value Technology
Variables Value

post-IHPTET engine External file name IHPTET engine deck Post-IHPTET engine
deck

Composites

Fuselage FRFU 1.175 1.0
............................ _ ....................... b .......................... b .........................

Horizontal Tail FRHT 1.16 1.0

Vertical Tail FRVT 1.26 1.0

Nacelles FRNA 1.06 1.0

Laminar Flow
............................ _ ....................... i- .......................... t- .........................

Wing TRUW Not used 35.0%
............................ _ ....................... b .......................... b .........................

TRLW Not used 20.0%

Horizontal Tail TRUH Not used 40.0%

TRLH Not used 40.0%

Vertical Tail TRUV Not used 40.0%

TRLV Not used 40.0%

Nacelles TRUN Not used 50.0%
........................... -i- ....................... _ .......................... 1. .........................

TRLN Not used 50.0%
........................... -_ ....................... _ .......................... i. .........................

Landing CL._x CLLDM 2.7 3.1

Take-off CLm_ CLTOM 1.89 2.1

5. 4. 4. Aerodynamic Analysis Automation

Statistical approaches, such as the Response Surface Methodology (RSM) [16'321and Design of

Experiments (DOE) [14"231are incorporated into this study and described in detail in Ref. 12. The

use of RSM entails a great deal of up-front analysis in the form of repetitive execution of

analysis codes to gather enough data for RSE generation. Generation of RSEs for the objective

functions can require thousands of analysis cases, necessitating an automated process for

aerodynamic analysis and RSE generation. Two main objectives of automation are to remove

the possibility of human error during execution and allow execution by a single user. The

process must perform the following generic functions:

• Generate the DoE table

• Create the cases needed for that DoE

• Execute the analysis code of interest

• Extract information from the code output needed for RSE generation and put it into a

usable format for the statistical package, JMP

A series of UNIX and tk/tcl/341 shell scripts and FORTRAN programs were developed to

accomplish these goals. The overall process includes two main programs: a top level DoE
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execution script with a Graphic User Interface, called STARS, and the external analysis of the

low speed characteristics, called RUN, utilized by the top level. The top level script, STARS,

was written originally for the Life Cycle Cost class (AE4353) at Georgia Tech in the fall of 1995.

It has been expanded since then to incorporate other features, such as modularity, robustness, and

expandability. Each one of these two programs will be described in detail so that they may be

utilized in the future by others. Furthermore, all of the scripts and files utilized for this study are

contained in alphabetical order in Appendix A.

STARS: Top Level Automation

As stated previously, STARS was developed by this author, in collaboration Dr. Mark Hale,

to automate the DoE case execution process. It was expanded for the purposes of this study to

include the capability of including the low speed aerodynamics needed for the GRA analysis in

FLOPS and execution of FLOPS/ALCCA. Within the STARS shell script, there are three sub-

components of the main script: the pre-processor, the processor, and the post-processor; shown in

Figure 5.4-3.

[DoE table li [Baseline file Ii

l ..... I...........
Pre-processor

Create case files and replace design

variables as specified by selected DoE

I Processor

Post-processor
Parse FLOPS/ALCCA output

files to obtain JMP compatibility

Figure 5.4-3. STARS Script - Top Level Automation

The main script sets up the GUI and allows the user to select from a library of DoE designs.

This library is identical to those DoEs as defined in the JMP options. The library of designs is

divided into screening tests and RSEs. The screening test options allow for three to thirty one

variables, and the response surface options include three to eleven variables. Each option has

different DoEs, such as Central Composite, Box-Behnken, and Fractional Factorial. Depending

on the response surface design chosen, an appropriate RSE alpha must be inserted, or if a face-

centered design is desired, an alpha value of 1.0 is used. This alpha value corresponds to the star

point, i.e., axial point, locations defined in JMP. In addition, the user must define the baseline

file name where the default is 'baseline'. In this study, a special option was inserted; if the
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baseline file name was 'kirby', then STARS utilized other options to incorporate the low speed
information.

After the user selects a design, the appropriate DoE table appears. The user then inputs the

variables, associated namelist for those variables, a minimum and maximum value, and any

prefix required. It should be noted that STARS is namelist driven. The baseline file which is

manipulated must have a namelist format. This is required so that STARS can associate a

variable name with a given location in the baseline file.

Next, the user clicks the button 'Create Case Files From Above Variables'. STARS copies

the baseline file to the DoE determined case files. These files are called 'case#', where the '#'

corresponds to the number of cases required by that particular DoE. The GUI used for the

generation of the response surfaces is shown in Figure 5.4-4.

|M_tte; " .......... ............. ICi_ng e..s_:F,_).. now=*iiii_fet_:]..... : :i:iiii:i i:
,. ........ _ ,_. _w ;+ ,_,_,..,. . .................... " .............

'" " i:?" i'7 i 1:7 ......... i_i ....... '_,_il; _' _1"iWfi'?i'rJ ,;_ _'_iii?_;_'??;

| :i:: _/m'l_tN_n'd)_, i V_7: !i:ii:i_!i_ Narn_lst i:::::::::: i:]i_:M|nlrnum::i:i!_iiiiii_i_:.;Ma_tn'stm_iiiiii:::::::::_ Pr_x_ii:f:i_i_i_i_:??:!_::

: : : _ _,_:.::.:.:.:.!:! :.:.: ::::::: ::.:.i::ili:_i::iiii:i [-'7_;ii : ' _:_:._::::: i::

:::::::::::::::::::::::::::::::::: il ::.it_3!? !i73!!Zi_i?3_3_::ii::ii::::::::i:i

_i ::::i: i ::_ii i_3!iF_ _-_i_i]i_!i_iii!i7i!iii-!::i:.31:-_iii::i i::ii:.ii::i:i::ii

_iii: ?:iii_::i :?:i::i iiill : iiiii:J1225_!_:i i? i?iii i::ii?iiii!i?:_ii?
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Figure 5.4-4. STARS GUI

Once the variables have been entered, the first subcomponent of STARS is performed. The

file 'CreateFiles.tcl' is executed and replaces the design variables entered in the GUI. As stated

previously, a special option was inserted for this study. If the baseline file was 'kirby', the low

speed information obtained through the shell script 'RUN' was inserted to the appropriate case

file. Next, a button labeled 'Run Michelle's Special' is then enabled. The user then clicks on

this button, and the processor takes over.

The main processor is contained in a file called 'Kirby.tcl'. This file controls the execution

of the FLOPS/ALCCA. Once FLOPS/ALCCA is complete, the post-processor assumes

command. The post-processor parses the output from FLOPS/ALCCA into useful information

for JMP. The output file, 'case.out#', is parsed for ten different pieces of information: TOGW,

empty weight, mission fuel weight, wing weight, LdgFL, VAPP, TOFL, acquisition price, and

RDT&E costs. At this point, the process is complete.
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It should be noted that the memory required for complete execution can be expensive. As an

example, if the user wants to generate an RSE for eight variables, and is using a face-centered

Central Composite Design consisting of 145 cases, the total memory requirements is

approximately 145"216 KB, as shown in Table 5.4-3. Hence, 31420 KB or 31.4 MB of storage

is required. In addition, execution time requires approximately two minutes, which includes

creating the files. For the DoE stated, the total CPU time was approximately five hours on an
IBM RS-6000.

Table 5.4-3. Memory Requirements per Case

File : Memory (KB)
i
I

low# i 0.165

case# i 6.256
...................... 4- ......................

case#.out i 210
...................... t- ......................

Miscellaneous 110
...................... t- ......................

Total 1226.42
i

RUN: Low Speed Automation

The low speed information required by FLOPS for this study was established by linking

several codes together - RAM, AERO2S, and BDAP through tk/tcl shell script and a FORTRAN

code. The geometric modeler, RAM, was utilized for the geometry definition and visualization.

AERO2S and BDAP were employed for analyzing the lift induced drag and profile drag,

respectively.

As with any analysis code, an input geometry is required along with various analysis control

switches and flight conditions. Hence, the first step for any conversion is identifying what one

wants and what one has available. AERO2S and BDAP require similar definitions with slight

deviations. The geometric modeler, RAM, writes a hermite file for the geometry definition.

This hermite file is divided based on the number of component sections of the geometry. Each

component is defined by X, Y, and Z coordinates for various cross-sections. This definition is

not compatible with the analysis codes. Therefore, a script was written to extract the various

component information and convert it into a definition compatible with AERO2S and BDAP.

Figure 5.4-5 show the flow of logic for the shell script, RUN. Each portion of the flow chart

shown will be described in detail. Please refer to Appendix A for detailed file descriptions.

Aerospace Systems Design Laboratory Page 43



DMLA Study, Year 2 Contract NAG-l-1662

RUN Shell Script

Input Files:
baseline.hrm baseline.ram
mission thick

hthick

L-I_I Parse baseline.hrm _'- _

Write Temporary Geometry Files:
engine.info fuse.info

h_tail.in fo v_tail.in fo

wing.info h
Parse baseline.ram and mission:

wing reference area
mean aerodynamic chord

flight condition
case number

F
Run convert:

convert hermite geometry to
AERO2S and BDAP geometry

Write Temporary Files:
aero.info

aero2.info

bdap.info

Parse bdap.info: I
_ write bdap.in

Execute BDAP

Parse aero.info and aero2.info:
write aero2s.in

Execute AERO2S

add profile drag to each lift induce drag component
Write low#

Figure 5.4-5. Flow Path of Logic for Low Speed Shell Script

First, RUN requires five input files: 'baseline.hrm', 'baseline.ram', 'mission', 'thick', and

'hthick'. The ".hrm" file, as stated previously, contains the component geometry definition. The

'.ram' file contains geometric parameters such as mean aerodynamic chord and wing reference

area. The two files, 'thick' and 'hthick', contain the description of the wing and horizontal tail

airfoils. The airfoils are defined by the maximum thickness-to-chord (t/c) ratio, the maximum t/c

location in percent chord, and the leading edge radius. And finally, the mission file contains the

case number under consideration and the flight condition to be analyzed (i.e. Mach number and

altitude).

The first step performed by RUN is extracting the component information from the RAM

hermite file. Considering that BDAP and AERO2S only need half of the configuration (if it is

symmetric), only the right hand side of the geometry was extracted. The fuselage definition was
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withdrawn from the hermite file. This definition was defined by 25 cross-sections and 33 points

per cross-section. Next, the engine coordinates were gathered and defined by 16 cross-section

and 21 points per cross-section. The wing, horizontal tail, and vertical tail were defined by two

cross-sections (root and tip) and 23 points per cross-section, Each one of these 5 components

was written to an appropriate file: 'fuse.info', 'engine.info', 'wing.info', 'v_tail.info', and
'h tail.info'.

Next, the FORTRAN code 'convert' was executed to convert the above definitions to those

compatible for AERO2S and BDAP. The code 'convert' was created in such a fashion so that

each step taken in the code corresponded to the information needed to define the BDAP input

and then the AERO2S input. Please refer to References 22 and 25 for input descriptions.

'Convert' reads the component geometry files created by 'RUN' and stores the X, Y, and Z

information into appropriately defined arrays. The fuselage is the first component to undergo

conversion. As required by BDAP, only 20 cross-section (specified by x-location) can be used to

define the fuselage and each cross-section must be defined by Y and Z locations from bottom to

top. Since there were 25 cross-sections from the hermite file, 5 had to be removed. These 5

were chosen such that the curvature description of the fuselage would not be lost. As seen in

Figure 5.4-6, the 5 points removed from the fuselage allowed for a linear interpolation between

cross-sections and smoothness of curvature was retained. Only 20 points per cross-section were

used for the BDAP input. The arrays of X, Y, and Z coordinates were reformatted and written to

the file 'bdap.info'.

2 4

Figure 5.4-6. Fuselage Cross-Section Exclusion

Following the conversion of the fuselage, the wing definition was converted. This

component created the most difficulty due to the definition provided by the hermite file, and the

definition required by BDAP and AERO2S. Many assumptions were made regarding the

conversion of the geometry and will be described in detail. As in the case with the fuselage, the

wing geometry file was read and stored in various arrays. As shown in Figure 5.4-7, the

definition of the wing was defined by 22 points on the root and tip of the wing. Note, this

definition also applied to the horizontal and vertical tail. This definition was not sufficient for

BDAP or AERO2S. Actually, the more accurate the solution obtained from these codes is

directly proportional to the amount of spanwise station definitions of the wing. Typically, 20

stations is an adequate amount. Hence this original description would need to be expanded from
2 stations to 20.
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Z y

vX

Figure 5.4-7. Hermite Definition of Wing Surface

Furthermore, both AERO2S and BDAP require specific information regarding the airfoil

description. BDAP needs z-ordinates and half-thicknesses for at least 10 points per section if a

symmetric airfoil is not used; and AERO2S requires z-ordinates. As a result, the wing was

divided into 20, equally spaced, spanwise stations. From these stations, four sets of arrays were

defined to describe the wing. These arrays are described in Table 5.4-4. The arrays were

determined based on linear interpolation from root to tip.
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Table 5.4-4. Wing Array Definition

Array Description
..................................................................................................

Wing Leading Edge WXLE(I) I = 1,...,20 increasing from root to tip

WYLE(I) ....

............................... ...... v,:,..............................................

..................................................................................................

..W.!.n.g..T..r.a!!i.n..g..E.d.g.e_..... WXTE(I) I = 1,...,20 increasing from root to tip
.....................................................................

WYTE(I) ....

WZTE0) ....

...... iJi, iSj ..... ...........
J = 1,...,10 increasing from LE to TE

.................................................................................................

WYUP(I,J) ....
.................................................................................................

WZUP(I,J) ....
................................................................................................

Wing Lower Surface WXUP(I,J) I = 1,...,20 increasing fi'om LE to TE

J = 1..... 10 increasing from LE to TE

............................. ....i":;'..............................................

.................................................................................................

' WZUP(I,J) , ....
i

The above definition of the wing was not sufficient. This was due to the fact that the z-

ordinates defining the upper and lower surfaces of each airfoil were not in the same plane. For

example, consider Figure 5.4-8 and the airfoil cross-section shown. BDAP requires that the z-

ordinates and half t/c associated at those points be defined in the same cross-section cut planes.

The only way to achieve a correct definition was to represent the upper and lower surfaces of the

wing by curve-fit equations [351. Therefore, at a given x/c percent location, the z-ordinate and half

t/c would be nothing more than a difference of equations representing the upper and lower
surfaces.

Cross-sectional Cut

Figure 5.4-8. Cross-sectional Cut of Wing Airfoil

Initially, a quadratic equation representing the entire upper surface was assumed to be

adequate. Yet, when the curve-fit approximation was compared to the actual airfoil, the

representation was horrendous. As a result, three curve-fits were needed for accurate

representation. A cubic curve-fit was needed at the first four point at the leading edge of the

airfoil to capture the drastically changing leading edge radius. This cubic equation was valid for
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approximately 12% of the airfoil chord length. Two quadratic equations were used for the

middle and trailing edges respectively.

Once the coefficients of these polynomials were determined, the z-ordinates and half t/c

ratios could be established. Twelve points were assumed to model the airfoils and were defined

leading to trailing edge and from the root to tip. These points were defined at 20 stations for the

following percent chords: 0, 0.5, 0.75, 2.5, 7.5, 20.0, 30.0, 50.0, 70.0, 85.0, 95.0, and 100. Based

on the curve-fit equations and the fixed percent chords, the wing airfoil spanwise stations were

defined. Once again, these definitions were formatted and written to the 'bdap.info' file.

The next component definition required by BDAP was the engine. The 'engine.info' file was

read and coordinates stored in arrays. BDAP wants the engine defined as different x-stations

with a centerline point and a radius corresponding to that point. This was a straight forward

calculation based on the midpoint y-location, and the difference of two distantly space z-

coordinates. The values were reformatted and written to 'bdap.info'.

The vertical and horizontal tails were straight forward since symmetric airfoils were used.

For both components, 12 points were used to define the root and tip airfoils. Since both

components used symmetric airfoils, only the half t/c was needed for definition. These values

were written to 'bdap.info'.

Ensuing the development of the BDAP geometry conversion, the conversion of AERO2S

was quite simple. AERO2S requires leading and trailing edge locations for both the wing and

horizontal tail. Based on those locations, a cambered surface is defined between the leading and

trailing edges. This is how a fuselage can be simulated; define the nose and tail x-location, and

then define the camber as the z-displacement of the fuselage centerline. For this study, 20

spanwise station were used for the geometry definition for AERO2S. The arrays defined for

BDAP were reformatted for compatibility with AERO2S. The information was written to two

files, 'aero.info' and 'aero2.info'.

The final task of the "convert" code was to determine the Reynolds number. This was

achieved by extracting a subroutine in FLOPS which calculates the Reynolds number based on

the mean aerodynamic chord and the flight condition. The result was used for AERO2S.

At this time, the shell script RUN resumes command. It extracts the information from

'bdap.info', writes a header containing the control switches for BDAP, inserts the 'bdap.info',

inserts more control switches, and then executes BDAP. Next, 'RUN' performs the same steps

on 'aero.info' and 'aero2.info' to build the AERO2S input file. 'RUN' then executes AERO2S.

Once the low speed analysis is complete, RUN parses the output files from both codes. From

BDAP, the profile drag is extracted; and from AERO2S, the induced drag and lift for ten angles

of attack are extracted. RUN then adds the profile drag constant to each term of the induced drag

and writes the results to the file 'low#', where the '#' indicates which case is being executed. At

this time, the low speed automation shell script is finished.
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The file 'low#' is the file needed by STARS and FLOPS. Depending on the case file being

created by STARS, the corresponding 'low#' is opened and inserted into the namelist TOLIN in

the 'case#' file. To reiterate the importance of the shell script created for the low speed analysis,

the rational of the study must be recalled. Three of the system-level metrics under consideration

for this study were VAPP, LdgFL, and TOFL. Within FLOPS, these metrics are determined

separately from the sizing module. The only information needed are the aircraft weights and low

speed drag polars. Therefore, to accurately capture the impact of varying geometry on those

three metrics, the correct drag polars had to be generated.

5. 5. Identifying Important Design Variables

With the analysis tools identified and the automation process created, the actual aerodynamic

study could begin. The reader should recall the purpose of the study: identify a feasible design

space of GRA configurations which could be considered for the DMLA initiative.

The first step in any performance investigation is the identification of all pertinent geometric

design parameters which could influence the aerodynamic characteristics of the GILA. Figure

5.5-1 depicts the majority of the contributors in a cause and effect diagram. Most of these

parameters are inputs to RAM and FLOPS and may be selected for the aerodynamic study. The

Ishikawa t36]diagram displayed presents the various design variables which affect the overall "

system metrics.
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Figure 5.5-1. GRA Aerodynamic Ishikawa Diagram
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Many of the variables identified in Figure 5.5-1 were not options for this study. This study

focused on opening the design space on a fixed configuration. Therefore, mission parameters,

such as payload and range, were fixed. In addition, based on the baseline definition of the GILA,

the fuselage length was fixed at 163.5 ft, with a maximum width of 22.7 fi and height of 20.0 ft.

Furthermore, an investigation was performed on the actual aerodynamic calculations within

FLOPS. It was discovered that the dihedral of the wing and horizontal tail do not affect the

results; nor does the actual z-displacement, i.e., the aircraft could be high or low wing, or T-tail
or conventional, and the results would not deviate. This could be a source for inaccurate results

due to the fact the a high wing has more interference drag from the fuselage and wing interaction.

In addition, some of the variables defined are redundant. If the wing aspect ratio (AR) and span

are specified, the wing area, SW, can be calculated. Therefore, one of those had to be eliminated

as a possibility. Furthermore, based on the baseline aircraft definition, no twist was assumed.

After a down-selection exercise, 17 variables were identified as significant. Through a

brainstorming exercise, the ranges for these significant variables were established. Table 5.5-1

presents the ranges for the 17 most significant variables selected in terms of their extreme

settings, i.e. minimum and maximum values. These values were established based on an analysis

of the VLT baseline. The desire was to capture the geometry of the VLT and, with hope, capture

an optimal configuration in those ranges. Also, the cruise Mach number range was dependent on

the type of technology added to a configuration.
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The cruise Mach number range was dependent upon the level of technology applied to a

configuration. For the baseline aircraft and the configurations with composites, the Mach

number varied between 0.74 and 0.78. The HLFC technology allowed the cruise Mach number

range to increase to 0.78 to 0.83. This range was also applied to the configurations including

composites and HLFC. The ranges for the Mach number were determined based on a trial-and-

error procedure. Each configuration was sized at various Mach numbers. The highest Mach

number at which the configuration could still fly the mission became the upper limit.

Table 5.5-1. Significant Design Variables

Parameter Minimum Maximum Units 'Symbol
I

Wing Aspect Ratio 8.0 11.0 ', AR
a

.................................................................................................. t- .............

Wing Taper Ratio 0.21 0.28 : TR
i

................................................................................................. t- .............

Wing Reference Area 5800.0 6800.0 _ : SW
................................................................................................. t" .............

Wing Quarter Chord Sweep 22.0 40.0 degrees ! SWEEP

Wing Maximum t/c ratio 0.09 0.11 % chord ', TeA

Horizontal Tail Aspect Ratio 3.6 4.2 i ARHT
................................................................................................... I- .............

Horizontal Tail Taper Ratio 0.25 0.45 ', TRHT
i

Horizontal Tail Reference Area 1225.0 1400.0 _ ', SHT
i

Horizontal Tail Quarter Chord Sweep 18.0 40.0 degrees ! SWPHT

Horizontal Tail Maximum t/c ratio 0.08 0.10 , % chord ', TCHT
................................................. ,t" ................................................ t- .............

Vertical Tail Aspect Ratio 1.15 1.35 ' ', ARVT
i

Vertical Tail Taper Ratio 0.33 0.63 ' i TRVT

Vertical Tail Reference Area 900.0 1100.0 ,' _ i SVT

Vertical Tail Quarter Chord Sweep i 24.0 50.0 , degrees SWPVT

Vertical Tail Maximum t/c ratio i 0.09 0.12 % chord TCVT

Thrust-to-Weight Ratio i 0.26 0.32 i TWR

Cruise Mach Number* ' 0.74* 0.78* ' VCMN
i i i

* Dependent upon level of technology applied.

These values were input into RAM for the low speed analysis and then into FLOPS/ALCCA

in accordance with the DoE table for the screening, or Box-Behnken, format for the RSE. Each

row in the DoE table yielded one FLOPS/ALCCA output, e.g., TOGW, based on the input

variables and their assigned levels in that row. The ground rules and assumptions established for

the aerodynamic analysis are presented in Table 5.5-2.
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Table 5.5-2. GRA Aerodynamic Analysis Assumptions

Discipline Assumptions

Aerodynamics HLFC simulated by assuming a percent LF over a component surface

HLFC increases Ccm_ at take-off and landing by 11% and 14.8%

Elliptic lift distribution (Oswald efficiency = 1.0)

Take-off and landing drag polars generated at an altitude of 1000 ft

Cruise drag polars generated at an altitude of 45,000 ft

Fixed airfoil camber and maximum thickness location

No flaps utilized

Propulsion No degradation in engine performance from use of HLFC

Dimension fixed (diameter = 12.855 ft, length = 19.076 ft), thrust scaled

Stability and Control Not taken into consideration, assumed a stability augmentation system is
available

Geometry Fixed fuselage length of 163.5 ft

Fixed fuselage diameter and width of 24.7 ft and 20.0 ft

High wing

T-tail empennage

Mission Fixed cruise altitude of 45,000 ft

Fixed range of 8,000 nm
........................... I" .......................................................................................

! Fixed payload of 150,000 lbs
i.

Economies : Default values applied within ALCCA
........................... . .......................................................................................

t

: Aircraft unit price excludes RDT&E costs

The second step of the GRA aerodynamic study is the development of the equations for the

metric responses in terms of geometric variables using the RSM. As previously shown, a three-

level DoE for 17 variables requires too many runs to obtain an RSE in a reasonable amount of

time. Therefore, based on the Pareto principle, a screening test was conducted using a two-level

DoE linear model in order to identify which 7 or 8 of the 17 variables contributed to the

responses. After obtaining the response outputs for all level combinations displayed in the DoE

tables, an Analysis of Variance, or ANOVA I16], for the main model effects was performed on

each configuration metric to determine which variables significantly contributed to the system

metrics and constraints. The Pareto plots, Figure 5.5-2 to 5.5-5, displays these contributions for

the baseline GRA. The Pareto charts were generated for each metric for each configuration,

resulting in 40 Pareto charts. The objective of the Pareto charts was to identify if any of the main

contributors were common among the configurations.

The bar chart depicted indicates the relative influence of each variable, while the solid curve

represents the cumulative contribution to the response. The Summary of Fit, represented by the

R 2 term, estimates the amount of variation in the response around the mean which is explained by

the fitted model [331. Since the "experiments" performed are computer simulations that are 100%
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repeatable, fit error is only due to lack of model fit or model error, i.e., the curvature and

correlation of parameters not accounted for in the model. As a general rule of thumb, a Summary

of Fit, or R 2 value, greater than 80% represents a good model fit t33j. For this study, R 2 values of

greater then 95% for all configuration mettles were achieved.

Term Scaled Estimate
AR -35989.703
TWR 29226.641

SWEEP 15988.359
TCA -5405.797
VCMN -4914.828

SVT 4409.047

SHT 4015.422

TRVT 3526.672
TRHT 3218.641

TCHT 1133.734

TCVT 1095.141

TR 845.328

SW --412.203
ARVT 205.391

SWPVT -179.203

ARHT 47.203

SWPHT 40.953

• .4 .6

iiiiiiiiiii!iii!iiiiiii i  ii ii .........

Figure 5.5-2. Pareto Chart for TOGW

As is seen in Figure 5.5-2 for the TOGW for configuration 1, approximately 90% of the

response is captured by the first seven variables: wing aspect ratio, AR, thrust-to-weight ratio,

TWR, wing quarter chord sweep, SWEEP, wing maximum thickness-to-chord ratio, TCA, cruise

Mach number, VCMN, vertical tail area, SVT, and horizontal tail area, SHT. The remaining

variables did not contribute significantly to the TOGW variation. In addition, the logic behind

the significance of each variables is intuitive. One would expect these variables to be more

important on a system level than variables such as the quarter chord sweep of the horizontal and

vertical tails. Yet, variables such as the taper ratio of the vertical and horizontal tail appear to

have more influence than the wing area. This is a misleading result. The rationale behind the

importance of the taper ratios is that the range for these two variables were quite large as

compared to the relatively small range of the wing area. As a result, the relative importance was

magnified.
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Term Scaled Estimate
AR -32813.094
TWR 16437.938

SWEEP 12812.156

SW -5085.687

VCMN -4090.281

SVT 2842.156

SHT 2528.156

TRVT 1611.344

TRHT 1367.625

TCA 915.063

TCHT 904.063

TCVT 881.000

TR 688.438

SWPVT -171.219

ARVT 160.625

ARHT 36.250

SWPHT 33.969

.6 .8

Figure 5.5-3. Pareto Chart for Mission Fuel Weight

In the Pareto chart for the mission fuel weight, the wing area becomes more of a contributor

than in the TOGW chart and the TCA importance reduces. This is an expected result. As the

surface area of the wing increases, so does the drag. Hence, more thrust is needed and thus more

fuel. Yet the AR, TWR, SWEEP, SW, VCMN, and SVT were main contributors once again.

For the constraint VAPP below, the wing geometry dominates, since VAPP is a direct function

of how much lift the wing can produce. And as expected, the block time is dominated by the
cruise Mach number, VCMN.

Term Scaled Estimate
SW -4.9171875

AR -2.6296875

SWEEP 1.9328125

TWR 1.7546875

TCA -0.3546875

VCMN -0.2890625
SVT 0.2515625

TRHT 0.2203125

TRVT 0.1671875

SWPHT 0.1328125

SHT 0.0671875

ARHT -0.0546875

ARVT -0.0484375

TCVT 0.0421875

TCHT 0.0359375

SWPVT -0.0296875
TR -0.0015625

Figure 5.5-4. Pareto Chart for VAPP
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Term Scaled Estimate

VCMN -0.4067187
AR 0.17046875

SW 0.07671875

SWEEP -0.0745312

TWR -0.0401562

TCA 0.01609375

TRVT -0.0095312

SVT -0.0089062
ARHT -0.0067187

SWPVT 0.00578125

TR -0.0057812

SHT -0.0051562
TRHT -0.0045312

TCVT -0.0032812

SWPHT 0.00046875

ARVT -0.0001562

TCHT -0.0001562

.6

Y
.8

Figure 5.5-5. Pareto Chart for Block Time

As stated previously, a Pareto chart was generated for each configuration metric. Each of

these 40 Pareto charts were analyzed and a great deal of commonality was established. In most

instances, eight variables constituted approximately 90% of the response. Those variables were

AR, SW, SWEEP, TCA, SHT, SVT, TWR, and VCMN. These eight main contributors would

constitute the variables used for generating the RSEs for the system-level metrics and constraints.

The remaining variables, which contributed very little to the responses, were fixed for the

remainder of the study. The fixed values were determined via a prediction profile chart. The

prediction profile chart shows the prediction traces for each variable; where the prediction trace

is defined as the predicted response in which one variable is changed while the others are held

constant. The prediction profile for configuration 1 is shown in Figure 5.5-6. The objective

functions and constraints are listed on the left, and the design variables at the bottom. Since one

of the main objectives of this study was to minimize the system-level metrics subject to four

constraints, the design variables which did not contribute significantly were fixed in the direction

which would meet said objectives. The values of the fixed variables are listed in Table 5.5-3.

Upon further review of the prediction profiles for each configuration, it was discovered that the

fixed variables settings in Table 5.5-3 allowed for an increase of 0.1 in VCMN for configurations

2, 5, 6, and 7.
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Table 5.5-3. Fixed Design Variables

Design Variable Fixed Value

Wing Taper Ratio 0.245

Horizontal Tail Aspect Ratio 3.9

Horizontal Tail Taper Ratio 0.25

Horizontal Tail Quarter Chord Sweep 29 deg

Horizontal Tail Maximum Thickness-to-Chord Ratio 0.08

Vertical Tail Aspect Ratio 1.15

Vertical Tail Taper Ratio 0.33

Vertical Tail Quarter Chord Sweep 37 deg

Vertical Tail Maximum Thickness-to-Chord Ratio 0.09
i

5. 6. Response Surface Equation Generation

The eight independent variables defined above were used to generated the RSEs for each

configuration metric. The RSEs were generated using a face-centered Central Composite design.

The Central Composite design is one of the more popular response surface designs. It combines

a two-level fractional factorial with center points (all factor values are at the midrange value) and

face-centered axial points (all factors set at midrange value and one factor set at an outer

extreme). This design requires 145 cases to be analyzed. Due to the commonality of the design

variables for each configuration, the generation of the RSEs for the ten responses could be done

simultaneously for a given configuration; that is, one set of 145 cases for a given configuration

would result in the 10 metric RSEs of interest. Therefore, a total of 1,160 cases were executed.

The total CPU time required for this execution was on the order of 38.7 CPU hours.

Once the cases were generated, a Summary of Fit, R 2, analysis was checked to ensure that the

model fit was acceptable. All 40 RSEs generated achieved an R 2 value of at least 98.9%. Since

this R 2 value is close to one, it can be assumed that no higher interactions are significant to the

responses; therefore, the quadratic representation of the responses was a sufficient estimate.

Furthermore, to ensure that the RSEs were accurately representing the analysis performed by

FLOPS/ALCCA, a confirmation test was performed on each RSE. The confirmation test

consists of setting the design variables of the RSE to some value and then executing the analysis

code at those values and comparing the results. Table 5.6-1 shows the results of the confirmation

tests. The negative sign implies that the RSE is under predicting the response compared to the

FLOPS/ALCCA output. Typically, a confirmation deviation of less than 5% implies that the

RSE is accurately representing the analysis tool. All RSEs listed in Table 5.6-1 were satisfying

this criteria except for the VAPP, LdgFL, and TOFL in most instances. This is due to the fact

that the low speed drag polars supplied to FLOPS/ALCCA were inserted from the

AERO2S/BDAP analysis. There was some slight deviation of the configurations geometric

definition in AERO2S and FLOPS. Since AERO2S is a 2-D analysis tool, the accurate

prediction of the fuselage lift and drag is not fully realized. This created some deviation in what
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FLOPS was expecting and what the analysis tool supplied. Hence, caution should be used when

considering the RSEs for VAPP, LdgFL, and TOFL. There is approximately 7 to 8% error in the
calculations.

Table 5.6-1. Confirmation of Response Surface Equations

Config. 1 i 2 i 3 4 ' 5 ' 6 7 : 8', : : ',i o J
! I ! ! I I I

RSE .......i i , , , i i
i i t , | | ,

.......... 4. ......... 4. ......... 4- ......... 4- ......... 4. ......... 4- ......... 4. ..........

TOGW -0.3 : -0.7 : -0.3 : -0.3 i -0.5 : 0.7 : -1.8 : -0.1o , i | J ,

i , | a i

Mission Fuel -0.7 : -1.5 : -0.7 i -0.8 , -1.2 i 1.9 : -4.7 , -0.3
Weight .......i i i i i i ,

i 0 ,i | t i

.............................. 4- ......... 4- ......... 4- ......... 4- ......... 4- ......... 4- ......... 4. ..........
• i t |

Empty Weight 3.2 : 2.9 : 3.5 i 3.5 : 3.1 i 3.6 : 3.4 i -0.1
............................... 4- ......... 4- ......... 4- ......... 4- ......... 4-" ........ 4- ......... 4- ..........

Wing Weight 0.2 : -0.5 : -0.2 : -0.2 : -0.4 : 0.5 : -1.4 : -0.1
i , , t i ! i

' iVAPP 7.6 ! 8.9 : 3.4 i 8.3 : 8.5 3.4 : 7.6 : 8.4i i o

.............................. 4- ......... 4- ......... 4- ......... 4- ......... t" ......... 4- ......... 4- .........

LdgFL 7.6 : 8.5 : 6.3 : 7.0 : 7.9 : 7.5 : 7.2 : 7.2
t i i i i i i

i i D

TOFL 0.5 i 12.1 i -1.4 i 0.1 : 1.7 : 3.3 : -0.8 i 1.9
..................... • ......... 4- ......... 4" ......... 4. ......... 4- ......... 4. ......... 4. ......... 4- .........

Block Time 0.2 : -0.2 : -0.02 : -0.04 : -0.1 : -0.1 : 0.5 : 0.01
| i i i t i i

• t Q ! i
Acquisition Cost -0.1 : -0.3 : -0.1 : -0.1 : -0.2 : 0.05 i -0.2 , -0.1i ,

..................... . ......... 4- ......... 4- ......... 4- ......... 4- ......... 4- ......... 4- ......... 4- .........

RDT&E -0.1 : 0.3 : -0.1 : -0.1 : -0.2 : -0.06 : 0.1 : -0.1
i i o t i , i
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6. Feasibility Study Results and Conclusions

The following discussions lead to the overall conclusion that the DMLA concept is well

worth pursuing. As the results indicate, the DMLA aircraft are both technically and economically

feasible, justifying the continuation of this study.

6.1. Aircraft Performance

At first glance, it could be said that the DMLA concept is technically feasible, given that

FLOPS successfully sized the aircraft variants. Inspection of the sizing results validates this

claim in the four-engine aircraft cases, yet disproves it for the twin-engine aircraft. As stated

before, range and payload were fixed to the values specified by the mission profiles in all cases.

For this preliminary design study, the performance metrics of cruise Mach number, fuel required,

takeoff gross weight, and required engine thrust remained to gauge technical feasibility.

. Cruise Mach number. As seen below in Figures 6.1-1 and 6.1-2, comparable performance

was achieved between the specialized aircraft and their DMLA counterparts. In fact, greater

cruise Mach numbers were achieved in the DMLA aircraft over the specialized aircraft.

However, this was caused by somewhat excessive thrust growth from FLOPS when

optimizing the DMLA VLT variants, as engine thrust was one of the variables for

optimization. The resulting difficulties are considered below with evaluation of the engine
thrust metric.

Global Reach Aircraft Cruise MAtchNumber

# Engines

Aircraft Family

Figure 6.1-1. Cruise Mach Numbers for GRAs.
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.

Very Large Transport Cruise Mach Number

--"..... _T..................................... U

# Engines

Aircraft Family

Figure 6.1-2. Cruise Mach Numbers for VLTs.

Takeoff gross weight (TOGW). For both the GRA and VLT aircraft, the DMLA variants

were heavier than their specialized-aircraft counterparts, as shown in Figures 6.1-3 and 6.1-4

below. For the VLT aircraft, the weight increase was modest, due mostly to changes in fuel

and engine weight. The increase in wing fuel capacity to accommodate the GRA mission fuel

in the DMLA VLT variant caused this component weight increase; thrust growth (discussed

later) increased the weight of the aircraft propulsion system. The actual fuel and engine

weight results are provided in Table 6.1-1 below.

Table 6.1-1. VLT Fuel and Engine Weight Increases.

Quantity

fuel weight (lb.)

engine weight (lb.)

Twin-Engine

Specialized DMLA

474533 481017

40906 40980

Four-En_ne

Specialized DMLA

456250 502767

61366 81873

In the GRA aircraft, conversion to the DMLA variants resulted in substantial weight gain.

This is most likely the result of the DMLA being designed for the VLT mission; since the

VLT variant is larger, its internal structure is heavier, making it overdesigned for the GRA

role. Furthermore, for each aircraft type, the larger gross weight increased the engine thrust,

resulting in a heavier engine, which further augmented aircraft gross weight. This becomes

evident upon inspection of Figure 6.1-7, shown later. Additionally, the GRA variants exceed

the weight limit specified in the New World Vistas by 8.75% in the twin-engine aircraft, and

15.96% in the four-engine aircraft. While these violations are tolerable, they raise doubt as to

the technical feasibility of the DMLA concept.
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a_

Global Reach Aircraft Takeoff Gross Weight
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Figure 6.1-3. Takeoff Gross Weights for GRAs.

Aircraft Family

.

Very Large Transport Takeoff Gross Weight

12OOOOO-

110000(

I00000C I"

9OOOO(

70000( /

•"""1"; ..... -'[ ...................................

i

2

# Engines

Aircraft Family

Figure 6.1-4. Takeoff Gross Weights for VLTs.

Fuel required. Considerable increases in fuel requirements occurred in creating the DMLA

variants for the VLT and GRA missions, depicted below in Figures 6.1-5 and 6.1-6.
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Global Reach Aircraft Required Fuel Amounts

ss_oo ........... i _ j
!

50000C /

45000( /
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2 Specialized
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# Engines

Figure 6.1-5. Fuel Requirements for GRAs.

Aircraft Family

Very Large Transport Required Fuel Amounts

55oooo-

500ooo

45000c

40o000

35000c

300OO(

25OO0O

# Engines

Aircraft Family

Figure 6.1-6. Fuel Requirements for VLTs.

These increases come from the engine thrust growth (described later); the more powerful engines

of the DMLA variants consume more fuel than the specialized aircraft powerplants. This is

further substantiated by Figure 6.1-7 below.
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Fuel and Thrust Requirements vs. Takeoff Gross Weight
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Figure 6.1-7. Fuel and Thrust Increasing with Takeoff Gross Weight.
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Required engine thrust. As mentioned above, higher Mach numbers came about due to

excessive thrust growth, illustrated in Figures 6.1-8 and 6.1-9 below. This creates the

problem in the case of the twin-engine DMLA aircraft of extremely high-capacity engines,

which are well beyond the capability of current propulsion technology, thereby violating the

governing assumption in this study of purely conventional aircraft. It can thusbe

immediately concluded that a conventional twin-engine DMLA is not technically feasible.

However, for the four-engine aircraft, the required engine thrust is well within current

technological limits. That is, in all four-engine DMLA cases, the engines require much less

than 98,000 lb. of sea-level-static thrust currently achieved by the Pratt & Whitney PW4098

powerplant for Boeing's high-capacity models of the 777 transport. (Pratt and Whitney).
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Global Reach Aircraft Required Engine Thrust
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Figure 6.1-8. Required Engine Thrust for GRAs.
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Figure 6.1-9. Required Engine Thrust for VLTs.

Several conclusions result from this analysis. First, the DMLA concept fails for the case of a

conventional, twin-engine aircraft family. The engines required are too powerful to exist given

current levels of propulsion technology. Aside from this condition, however, the second

conclusion is that overall, the DMLA concept is technically feasible. A single DMLA has been

successfully sized for both the GRA and VLT roles, yielding aircraft performance that is not

unreasonable. The third conclusion, however, deals with the questionable validity of claiming

technical feasibility, upon which the high DMLA gross weights cast doubt. DMLA aircraft are
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heavier than their specialized counterparts, especially in the GRA role; in this case, the Air Force

desire for a new transport weighing under one million pounds has not been satisfied (though not

grossly unsatisfied, either). This, and the first statement, lead to the final conclusion: an infusion

of new propulsive and structural technologies is clearly needed to completely prove technical

feasibility of the DMLA in all cases considered in this study. (The issue of new technologies is

addressed later in this report.)
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6.2. Aircraft Economics

Inspection of the cost results presented in the following figures, for both the GRA and VLT

aircraft, immediately demonstrates the economic feasibility of the DMLA concept.

The most obvious difference is the greatly reduced acquisition costs of the DMLA variants

over their specialized counterparts, as illustrated below in Figures 6.2-1 and 6.2-2. The reasons

for this lie at the heart of the DMLA concept's nature. First, the combination of a commercial

system and a military transport into a single aircraft family also combines their production

quantities - 900 DMLA, instead of 549 VLT aircraft and 351 GRA aircraft. This provides a

greater number of units over which to distribute the research, development, test, and evaluation

(RDT&E) costs that lead to the production of the first unit prototype, so the acquisition cost will

be lower. Second, since only one system is designed and produced, then the manufacturer need

only invest in one instance of RDT&E costs, instead of two (as would occur for two different,

specialized systems). Lower RDT&E costs then, of course, translate into lower acquisition costs
for the aircraft customers.

Global Reach Aircraft Acquisition Cost

250-

22,'

_ 200

17_

< 150

12_

IO0

Figure 6.2-1. GRA Acquisition Costs.
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Very Large Transport Acquisition Cost

Figure 6.2-2. VLT Acquisition Costs.

Figures 6.2-3 and 6.2-4 depict a less obvious result: DOC for the VLT variant of the DMLA

was less than for the specialized VLT, while these costs were higher for the GRA variant. The

previously mentioned fact that the DMLA was optimized for the VLT role and subsequently

overdesigned for the GRA role impacts economics as well. This characteristic of the DMLA

yields an aircraft as complex as the specialized VLT, yet more complex than the specialized

GRA. Thus, the GRA variant is more difficult to service and maintain, raising DOC.

Furthermore, the larger production quantity realized in the DMLA program also yields a greater

number of spares produced, reducing their cost and thus, the customer's maintenance costs.

While this is overshadowed by the cost increases due to complexity in the GRA variant, this
results in lower DOC for the VLT variant.
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Very Large Transport Direct Operating Costs
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Figure 6.2-4. VLT Direct Operating Costs.

IOC for the specialized aircraft increased only slightly in the DMLA, as shown in Figures

6.2-5 and 6.2-6 below. The small increases stem from the greater gross weight of the DMLA,

which would increase ground terminal fees. The increase is greater in the GRA aircraft, since the

weight increase from the specialized GILA to the DMLA variant was larger than that for the VLT
aircraft.
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Global Reach Aircraft Indirect Operating Costs
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Figure 6.2-5. GILA Indirect Operating Costs.
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Figure 6.2-6. VLT Indirect Operating Costs.

Overall, however, the DMLA obtained lower total operating costs per trip. TOC, the sum of

DOC and IOC, is shown below for all aircraft in Figures 6.2-7 and 6.2-8.
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Figure 6.2-7. GRA Total Operating Costs.
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Figure 6.2-8. VLT Total Operating Costs.

Required average yield per revenue passenger-mile is strictly a commercial affordability

metric. It is also the most inclusive, capturing the effects of nearly all contributors to airline

economics; it is therefore a good measure of an aircraft's affordability. Figure 6.2-9 below
depicts $/RPM for the VLT aircraft.
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Figure 6.2-9. VLT Required Yields.

Not surprisingly, the VLT variant of the DMLA requires a lower yield than the specialized

VLT. Since the acquisition costs and total operating costs per trip are less for the DMLA, then

less revenue yield is required for the DMLA-operating airline to break even.

Clearly, DMLA aircraft are more affordable than their dedicated counterparts. The initial

acquisition costs are substantially lower; operating cost savings are also realized. Thus, for both

cases of aircraft (twin-engine and four-engine), the DMLA concept is economically feasible.
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6.3. Effects of Two versus Four Engines

The above results lead to expected conclusions conceming the number of engines installed on

the aircraft. Additionally, the following conclusions hold for each category of aircraft

(specialized GRA, specialized VLT, GRA variant of DMLA, or VLT variant of DMLA).

From a performance point of view, the four-engine aircraft sized to higher cruise Mach

numbers than the two-engine aircraft in each category. Since the powerplant used in the four-

engine cases are lower-thrust engines, they possess greater thrust growth potential than the

powerplants installed on the twin-engine aircraft. Thus, FLOPS could more easily scale the

engines to higher thrust output in order to maximize the cruise Mach number. Also, the twin-

engine aircraft emerged from optimization with lower gross weights than their four-engine

corollaries. Although the individual engines are heavier in the twin-engine cases, their fewer

numbers mean half the redundancy in terms of nacelles, fuel systems, etc. in comparison to the

four-engine cases. Furthermore, the twin-engine aircraft required less mission fuel than the four-

engine aircraft, no doubt due to the lower gross weight of each twin-engine aircraft.

In terms of cost, the twin-engine aircraft were undoubtedly more affordable in all respects

than their four-engine counterparts; that is, ACQ, DOC, and IOC were consistently lower. Fewer

engines installed translates into fewer engines for the customer to purchase, lowering aircraft

acquisition cost. This also means fewer engines to maintain and fewer spares to purchase,

thereby reducing direct operating costs. Additionally, fewer technicians are needed, decreasing

indirect operating costs, which are further lowered by the lower terminal fees realized through

the lighter twin-engine aircraft.

As a result, it can be concluded that in the scope of this research problem, the sole advantage

of a four-engine aircraft is a higher cruising speed in comparison to a twin-engine aircraft. In all

other respects, however, the twin-engine aircraft is consistently superior. Such aircraft are lighter,

more fuel-efficient, and more affordable. Again, however, it should be noted that the results for

the twin-engine aircraft are not easily accepted, as the thrust output of these engines is unrealistic

by current technological standards.
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7. Aerodynamic Results and Conclusions - Configuration Optimization

7.1. Maximizing the Desirability

Once the RSEs were generated for each configuration, the desirability option within JMP was

utilized to determine the optimal settings of the design variables which would minimize the

objectives subject to the constraints. This process was performed for all eight configurations.

Figure 7.1-1 shows the desirability optimization for configuration 5. The optimization for all

other configurations was identical. As described in the Methodology section of this report, if the

Mach number was not maximized as a result of the desirability optimization, the Mach number

was forced to a maximum and the degradation in the desirability noted. If the degradation in

desirability was too large, say 10%, then VCMN would be reduced to approximately a 10%

degradation level. All configurations except for 1 and 3 resulted in a slight degradation. The

result of the desirability optimization for configurations 1 and 3 was that Mach number was

maximized. The reduction of the maximum desirability of the other six configurations was

between 0.7% and 7.3% The design variable values which maximized the desirability function

are summarized in Table 7.1-1 for each configuration.
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AR SW SWEEP ]'CA SHT SVT _ VCMN

Figure 7.1-1. GRA Configuration 5 Desirability Optimization

Desirmbillty

Five of the design variable which maximized the desirability for each configuration had

common values: wing AR of 11.0, wing TCA of0.11%, SHT of 1225.0 _, SVT of 900 ft 2, and a

TWR of 0.26. This result shows commonality of the design space and a gravitation to a global

optimum.
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Table 7.1-1. Optimal Design Variable Settings for GRA Configurations

•... ug"on _- j" ; ; ; ; ; ; ;' 2 : 3 ' 4 ', 5 ' 6 : 7 . 8• i i
i i | i 0 ¢ i
I I I I I I I

Design Variable ,' ,' ', ,.... , , ,
i ! i , ,| t

Setting ,......., , , , , ,
i f i i o | i

..................... _ .......... 4- .......... 4- .......... 4- .......... 4, .......... ÷ .......... 4- ......... -_,1- ..........
o

AR 11.0 1 11.0 1 11.0 1 11.0 ," 11.0 1 11.0 ,, 11.0 1 11.0
..................... • .......... ÷ .......... ÷ .......... i" .......... ÷ .......... ÷ .......... ÷ .......... ÷ ..........

SW(tt _) 6550 ', 6800 ', 6290 1 6310 : 6800 : 6290 ', 6800 : 6165
i o i I i i

..................... _ .......... 4- .......... 4. .......... 4- .......... 4. .......... 4- .......... 4- .......... 4- ..........

SWEEP(deg) 26.3 i 27.67 i 24.88 i 27.13 i 26.5 i 31.0 i 26.59 i 30.01
..................... _ .......... t .......... ÷ .......... t .......... t .......... ÷ .......... 4".......... 4" ..........

TCA 0.11 : 0.11 : 0.11 : 0.11 l 0.11 : 0.11 : 0.11 : 0.11
i i i t i i i

..................... • .......... 4" .......... I" .......... 4* .......... 4" .......... 4" .......... I- .......... 4" ..........

SaT(ft 2) 1225 1 1225 i 1225 i 1225 ! 1225 ! 1225 i 1225 i 1225
..................... _ .......... ÷ .......... ÷ .......... ÷ .......... + .......... ÷ .......... ÷ .......... 4" ..........

SVT(fP) 900 : 900 : 900 : 900 : 900 : 900 : 900 : 900
i , | i i i !

..................... 6 .......... 4- .......... 4- .......... i- .......... 4- .......... se ....... ----4- .......... 4- ..........

' ' i iTWR 0.26 : 0.26 i 0.26 i 0.26 i 0.26 : 0.26 0.26 0.26
..................... _ .......... ÷ .......... ÷ .......... ÷ .......... ÷ .......... 4".......... 4" .......... ÷ ..........

VCMN 0.78 : 0.84 : 0.78 i 0.83 : 0.79 : 0.84 : 0.80 : 0.83
| i i i 0

Desirability 0.813 i 0.661 i 0.809 i 0.854 ! 0.722 i 0.663 i 0.669 i 0.725
..................... • .......... 4" .......... ÷ .......... ÷ .......... 4" .......... 4" .......... 4" .......... 4" ..........

Desirability 0 : -5.16 : 0 : -0.77 : -1.16 I -7.33 : -6.6 : -3.44
i i i i i i i

Reduction (%) ,....... , , , , , ,
i 0 | i J i i
i i i i i i

7,2. Optimal Configurations

The values of the design variables in resulted in the minimization of the objective functions,

subject to all constraints. The values of the objectives and constraints are summarized in Table

7.2-1. The values shown were calculated by a FLOPS/ALCCA analysis of the optimal design
variable settings.

The two primary study objectives were to minimize the objective functions (TOWG, Fuel

weight, Empty weight, Wing weight, block time, and RDT&E costs) subject to four constraints

(VAPP, LdgFL, TOFL, and Acquisition price) and to maximize the cruise Mach number. As can

be seen in Table 7.2-1, all eight optimized configurations met the constraints of VAPP less than

150 knots, LdgFL less than 4,000 ft, and TOFL less than 10,000 ft. From Table 7.1-1, each

configuration was able to achieve the maximum value of the cruise number range for the

specified level of technology.
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Table 7.2-1. Optimal Values of the System Metrics and Constraints

Config. 1 i 2 ', 3 : 4 ', 5 ', 6 ', 7 : 8
i i i * |

I I i I I I I

TOGW 704683 ,: 684428 : 673928 : 641648 ,: 662253 , 629538 ,: 664643 i 596609

Mission Fuel 269226 : 250026 : 260353 : 233305 : 232077 : 209465 : 250392 : 197423
, , i , t : ,

Weight (lbs) ,....... , , , , , ,
a i ,, | , | i

.................. _ .......... =I" .......... =l" .......... q" .......... =P .......... 4" .......... "4" .......... "I" ...........

Empty 276222 : 275195 : 254407 : 249185 : 270976 : 260919 : 255060 : 249186
, i i * | 0 ,

Weight (lbs) ......., , , , , , ,
D i i J , t ,

.............................. '4" .......... "4- .......... "4" .......... "4" .......... "4" .......... '4" .......... "I" ...........

Wing Weight 95549 i 95553 i 90412 i 87402 i 93310 : 86047 : 93594 : 81851
[i10 )tits" ' ' 'i * t , , i !

, , , i , i D

............................. q" .......... -I- .......... "4" .......... "I" .......... "I" .......... "4" .......... "4- ...........

VAPP(knots) 93.6 : 88.7 : 84.7 : 78.9 : 86.9 : 79.3 : 87.1 : 78.4
, , , * , . 0

LdgVL(ft) 3708 1 3517 ! 3251 1 3169 1 3451 : 3182 i 3458 : 3148
t

............................. "4" .......... -I" .......... "}- .......... "I- .......... '4" .......... =I- .......... "I" ...........

TOFL(ft) 4955 : 3922 : 4578 : 3473 : 4238 : 3372 : 4268 : 3153
, , , , , , ,

Block Time 18.86 , 17.69 : 18.86 ! 17.88 1 18.49 1 17.5 1 18.08 1 17.72
(hrs) .......

.................. _ .......... 4- .......... 4- .......... 4- .......... 4- .......... 4- .......... -4- .......... 4- ...........
| , t ,

Acquisition 193.63 i 193.65 : 181.02 : 178.68 i 191.05 , 186.15 , 181.56 , 173.82
, | , ,

Price .......
t , , , ,

($M FY92) ......., , , , , , ,

..................................................................... + .......... ÷ .......... ÷ ..........

RDT&E 10815.1 : 11106.7 : 10383.2 : 10492.1 : 10697.1 : 10710.1 : 10418.8 ', 10215.0

($M FY92) .......
, i , i ! , i
i : i J : i

Configurations 6 and 8 achieve the lowest values of the TOGW and Mission fuel weight

while achieving a cruise Mach number of 0.84 and 0.83, respectively. Moreover, the

configurations which utilized HLFC tended to result in lower objective functions. Consider

configuration 1 and 2, the impact of adding HLFC to the clean aircraft resulted in a 2.87%

reduction in TOGW and a 7.13% reduction in mission fuel weight. Even though the wing weight

and empty weight were comparable in magnitude, the drag reduction on the wing due to HLFC

had a tremendous impact on the fuel required to complete the mission. This result could have a

tremendous impact on the Direct Operating Costs (DOC) of the aircraft. This same trend is also

evident between configuration 5 (post-IHPTET engine) and 6 (post-IHPTET engine with HLFC).

Yet, the magnitude of the reduction was increased to 9.7% from the use of a more fuel efficient

engine. Table 7.2-2 summarizes the percent improvement of the different configurations from

the clean aircraft, configuration 1. Note, the positive values indicate an improvement of the

objective function, i.e., a reduction in the objective function.
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Tabl_ 7.2-2. Percent Reduction in Objective Functions Due to Infusion of Advanced Technologies

Config. ,' 1 ' 2 ,' 3 , 4 ,' 5 ,' 6 ,' 7 ,' 8
i i i i * !i |

I I I I I I I

TOCW 0 12.87 14.36 i 8.95 16.02 i 10.66 i5.68 i 15.34
...................... _ ........ 4" ........ 4- ........ i" ........ 4- ........ 4. ........ 4- ........ 4. ........

Mission Fuel 0 i 7.13 i 3.30 i 13.34 [ 13.8 ,"22.2 ,: 7.00 ', 26.67
i

Weight .......J i * i i i i
J si s i | i

..................... _ ........ 4" ........ 4" ........ 4" ........ 4" ........ 4" ........ 4" ........ 4" ........

Empty Weight 0 : 0.37 : 7.90 [ 9.79 [ 1.9 : 5.54 : 7.66 : 9.79
! i i i i

..................... _ ........ 4" ........ ,_ ........ _- ........ 4" ........ 4- ........ 4- ........ 4" ........
i i | i 0 i

Wing Weight 0 : 0.0 ,5.38 : 8.53 : 2.34 : 9.94 ,2.05 , 14.34
i i !

..................... _ ........ 4. ........ 4" ........ 4. ........ 4" ........ 4. ........ 4" ........ 4" ........

VAPP 0 ', 5.24 : 9.51 i, 15.71 : 7.16 ', 15.28 ', 6.94 ', 16.24
J i i | a i i

..................... _ ........ 4- ........ _ ........ 4- ........ q- ........ 4- ........ q- ........ 4- ........

i

LdgFL 0 [5.15 i 12.32 [ 14.54 i6.93 [ 14.19 [6.74 : 15.1
..................... _ ........ 4" ........ 4" ........ t" ........ 4- ........ 4" ........ 4- ........ 4" ........

TOFL 0 i, 20.85 'i 7.61 °,29.91 ', 14.47 : 31.95 ', 13.86 i, 36.37
i i | i I i i

..................... _ ........ 4- ........ .l.- ........ _ ........ .t- ........ 4- ........ ,_. ........ 4- ........

i5 iBlock Time 0 i 6.2 i 0.0 .20 : 1.96 7.21 : 4.14 i 6.04
.............................. i" ........ 4- ........ 4" ........ "l" ........ 4" ........ 4- ........ _- ........

Acquisition Cost 0 : -0.01 : 6.51 : 7.72 : 1.33 : 3.86 : 6.23 : 10.23
i i i i | t D

($M,FY92) ,.......,, , , 0 , , ,
0 * i i *

..................... _ ........ '1" ........ 4- ........ 4" ........ 4" ........ 4" ........ 4" ........ 4" .........
i i

RDT&E 0 i'2.7 13.99 ,: 2.99 i 1.09 : 0.97 : 3.66 , 5.55
($M FY92) .... : , ,| i J * i i J

i i i i i i i
i i i i i i i

7.3. Optimal Configurations Performance and Weight Breakdown

The eight optimal configurations defined above were further investigated to determine the

detailed component weight breakdown and the performance characteristics. The weights
breakdown are summarized in Table 7.3-1 to 7.3-8.
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Table 7.3-1. Optimal Configuration 1 Component Weight Breakdown

Component Weight (lbs)

Structure 207461
......................................................... b .........................

Wing 95549

Horizontal Tail 8347
.......................................................... b .........................

Vertical Tail 6167

Fuselage 75012

Landing Gear 15453

Engine Nacelles and Pylons 6932

Propulsion 43797

Engines 38476

Fuel Systems 4883

Miscellaneous Systems 438

System and Equipment 24963

Surface Controls 5323

Auxiliary Power Systems 1017

Instruments 454

Hydraulic and Pneumatic Equipment 2683

Electrical System 3114

............................................... -Avionics ..................... 35()(3"

Furnishings and Equipment 5448

Air Conditioning 2936

.............................................. ......................
Empty Weight 276222

Operating Equipment 9195

Operating Weight 285417

Cargo 150000

Zero Fuel Weight 435417

Fuel Weight 269266

Take-off Gross Weight ' 704683
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Table 7.3-2. Optimal Configuration 2 Component Weight Breakdown

Component Weight (lbs)

Structure 207096
......................................................... b .........................

Wing 95553

Horizontal Tail 8298

.............................................................................. Vertical Tail 6"1"i4"

Fuselage 75012

Landing Gear 15453

Engine Nacelles and Pylons 6666

Propulsion 42543

Engines 37222

Fuel Systems 4883
.................................................................................... i.

Miscellaneous Systems 438

System and Equipment 25555

Surface Controls 5605
................................................................. ....................

Auxiliary Power Systems 1017
.......................................................... I- ..........................

Instruments 454
.......................................................... b ..........................

Hydraulic and Pneumatic Equipment 2783
.....................................................................................

Electrical System 3114
.....................................................................................

Avionics 3500
....................................................................................

Furnishings and Equipment 5448

Air Conditioning 3137

Anti-Icing 498
...................................................................................

Empty Weight 275195
...................................................................................

Operating Equipment 9207
...................................................................................

.Op _erati.n.g..Wei.ght .................................... i 284402
..........................

cg.go.................................................. ',150000
.........................

Zero Fuel Weight i 434402
...................................................................................

Fuel Weight ] 250026
..................................................................................

Take-off Gross Weight ' 684428
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Table 7.3-3. Optimal Configuration 3 Component Weight Breakdown

Component ,i Weight (lbs)
I

I

Structure : 187821
0

......................................................... Wing:'_ .................. 9()4i2"
.................................................................................. l.

Horizontal Tail : 7132
*

......................................................... I" .........................

Vertical Tail I 4830
i

Fuselage i 63840
......................................................... p. .........................

Landing Gear, 15453
.................................................................................. i.

Engine Nacelles and Pylons i 6155
.......................................................... I".........................

Propulsion ', 41872
*

.................................................................................... i.

Engines i 36551
.......................................................... t" ..........................

Fuel Systems 4883

Miscellaneous Systems 438

System and Equipment 24714

Surface Controls 5121
.......................................................... t" ..........................

Auxiliary Power Systems 1017

Instruments _i54"

Hydraulic and Pneumatic Equipment 2649

Electrical System 3114

Avionics ' 3500
.................................................................................. i.

Furnishings and Equipment , 5448

......................... "........... ....................
Anti-Icing ! 475

Empty Weight i 254407
..................................................................................

Operating Equipment i 9168

Operating Weight i 263575

Cargo [ 150000

Zero Fuel Weight i 413575
.......................................................... . ..........................

Fuel Weight I 260353

Take-off Gross Weight ' 673928
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Table 7.3-4. Optimal Configuration 4 Component Weight Breakdown

Component Weight (lbs)

Structure 184274

Wing .................. 874()2"'

......................................... / orizonta]"i'a'i]..................... 7"o62"

Vertical Tail 4759

Fuselage 63840

Landing Gear 15453

Engine Nacelles and Pylons 5758

Propulsion 39871

Engines 34550

Fuel Systems 4883

Miscellaneous Systems 438

System and Equipment 25039

Surface Controls 5217

Auxiliary Power Systems 1017

Instruments 454

Hydraulic and Pneumatic Equipment 2706

Electrical System 3114
......................................................... b ..........................

Avionics 3500

Furnishings and Equipment 5448
......................................................... b .........................

Air Conditioning i 3103
......................................................... b ........................ ,

Anti-Icing i 480

Empty Weight ' 249185
......................................................... _ ..........................

Operating Equipment , 9158
...................................................................................

Operating Weight : 258343
...................................................................................

Cargo : 150000
...................................................................................

Zero Fuel Weight i 408343
..................................................................................

Fuel Weight i 233305
..................................................................................

Take-off Gross Weight ' 641648
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Table 7.3-5. Optimal Configuration 5 Component Weight Breakdown

Component Weight (lbs)

Structure 204495

Wing 93310
......................................................... t- .........................

Horizontal Tail 8244
......................................................... m. .........................

Vertical Tail 6054

Fuselage 75012

Landing Gear .................. ]545;"

Engine Nacelles and Pylons 6422
................................................................................... i.

Propulsion 41387

Engines 36066

Fuel Systems 4883

Miscellaneous Systems 438

System and Equipment 25094

Surface Controls 5372

Auxiliary Power Systems 1017

Instruments 454

Hydraulic and Pneumatic Equipment 2728

Electrical .System 3114

Avionics 3500

Furnishings and Equipment 5448

Air Conditioning i 2970

Anti-Icing i 493

Empty Weight ' 270976
..................................................................................

Operating Equipment , 9201
......................................................... I" .........................

Operating Weight i 280177
....................................................................................

t

Cargo : 150000

Zero Fuel Weight i 430177

Fuel Weight i 232076

Take-off Gross Weight ' 662253
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Table 7.3-6. Optimal Configuration 6 Component Weight Breakdown
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Table 7.3-7. Optimal Configuration 7 Component Weight Breakdown
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From the component weight breakdowns above, main differences were identified. The most

prominent difference was the fuel weight for all configurations except for 3 and 7 where the

structural weight reduced. The reduction in mission fuel required is attributed directly to the

technology infused to the configuration. As stated previously, the reduction in fuel translates to a

reduction in DOC. This is an attractive feature regardless of military or commercial use.

The aerodynamic performance characteristics of each configuration are summarized in the

form of drag polars in Figure 7.3-1 (configurations 1 to 4) and Figure 7.3-2 (configurations 5 to

8). As a result of the commonality of 5 design variable values, the drag polars are quite similar.

The slight differences are coming through the variations in SW and VCMN. In Figure 7.3-1,

configurations 1 and 3 had higher drag at lower lift coefficients. Consequently, the two aircraft

tended to fly at a higher CL but with a reduced maximum L/D ratio.

0.9
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0.5

0.4

0.3

0.2

0.1

0

Config 1

_/ -_ Config 2

/ / + Config 3

/ --_ Config 4

I I I I I

0 0.01 0.02 0.03 0.04 0.05

Drag Coefficient, Co

Figure 7.3-1. Optimal GRA Configurations (1 to 4) Drag Polars

In Figure 7.3-2, configurations 5, 6, and 8 resulted in higher lift at lower drag. Actually,

configurations 6 and 8 produced the highest L/D ratio and cruised at the highest Mach numbers,

0.84 and 0.83, respectively
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Figure 7.3-2. Optimal GRA Configurations (5 to 8) Drag Polars

From an aerodynamics point of view, a maximum value of L/D is desired. As is evident

from Figure 7.3-3 and 7.3-4, configurations 2, 4, 6, and 8 resulted in the highest values. All four

of these aircraft employed boundary layer control through the use of HLFC technology. The

percent improvement from the original GRA baseline L/D is summarized in Table 7.3-9. The

most drastic improvement was form configuration 2 with a 3.97% increase, and configuration 4

pulled a close second. These two aircraft surpassed 6 and 8 due to the slightly lower wing

quarter chord sweep. Furthermore, the maximum desirability value for 2 and 4 were higher as

compared to 6 and 8. Hence, the degradation in the desirability function for configurations 6 and

8 directly translated to a reduction in the maximum obtainable L/D ratio. It was felt that this loss

was insignificant as compared to the benefits of reduced fuel weight through the addition of the

post-IHPTET engine technology. In other words, the trade=off of loss in maximum performance

for lower fuel weight seemed inconsequential.
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Figure 7.3-3. Optimal GRA Configurations (1 to 4) Lift-to-Drag Ratios
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Figure 7.3-4. Optimal GRA Configuration (5 to 8) Lift-to-Drag Ratios
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Table 7.3-9. Maximum Cruise Lift-to-Drag Ratios

The low speed performance of each configuration was also investigated. The drag polars

displayed in Figure 7.3-5 and 7.3-6 were generated by the low speed shell script 'RUN'.

Typically for landing, an aircraft needs high L/D, but also a high drag to reduce the VAPP and

LdgFL. Configurations 3, 4, 6, and 8 achieve this and have the lowest values of VAPP and

LdgFL. For take-off, the goal is to maximize the amount of lift the wing can produce.

Configurations 2, 4, 6, and 8 had the lowest TOFL. This would seem Contrary to the LdgFL

results except for the fact that the maximum CL obtained by these configurations was enhanced to

a value 2.1 to simulate the effects of HLFC technology.

2.5

1.5

0.5

I I I I I I

0 0.02 0.04 0.06 0.08 0.1 0.12

Drag Coefficient, C D

--Config 1 ]

--0- Config 2
--6- Config 3

Config 4

Figure 7.3-5. Optimal GRA Configurations (1 to 4) Low Speed Drag Polars
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Figure 7.3-6. Optimal GRA Configurations (5 to 8) Low Speed Drag Polars

Finally, a system level performance characteristic of interest is the payload versus range

capability. Figure 7.3-7 shows the eight configurations and the maximum obtainable range for a

ferry mission. Configuration 8 had the longest range with a capability of 17,682 nm.

Configuration 6 was the next farthest with 17,143 nm. These aircraft achieved these distances

due to low TOWG and advanced technology engines, i.e. post-IHPTET. These engines provided

a significant reduction in SFC and thus allow farther distances for a constant fuel amount. The

values of are tabulated in Table 7.3-10.
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Figure 7.3-7. Optimal GRA Configurations Payload vs. Range
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Table 7.3-10. Configuration Range Capability for a Ferry Mission

Configuration Ferry Range (nm)

1 14944
• ,,.,....,.,,,,,.., .................... , ............. . .,,,.,,.,,.,.,,... ....................................

2 15353
.,......... ..................................... , ............................................................

3 15238
,,..,.,..,...,,..,, ............... ,,..,......,......,......,..,...,.,...,.,,,,,.,,..,,,,..,....., ............

4 15945
,,.,,..,.. ....................................... .,.,. • ......................................................

5 16301
..................... ,,,,...,,,,. ..................... . ............................................. ..,. .....

6 i 17143

......................."_..........................['....................i__....................
8 i 17682

As a result of this study, it would appear as if configurations 6 and 8 were the superior

aircraft with respect to the eight optimal configurations identified. Both aircraft had the lowest

TOGW at 629,358 Ibs. and 596,609 lbs. respectively. These low values were a consequence of

the reduced mission fuel requirements from the infusion of the post-IHPTET engines and HLFC

technologies. In addition, both aircraft complied with all four constraints and achieved a maximum

cruise Mach number of 0.84 and 0.83. Even though the desirability function values were not at

the maximum levels, the overall performance characteristics and system-level metric values are

evidence to the excellence of these two aircraft Each aircraft could fly a substantial length for a

ferry mission. And as a result of the lower mission fuel requirements, the needed DOC will be

reduced.
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As a comparison of the optimal configurations to the original GILA baseline, Figures 7.3-8

and 7.3-9 show three views the original and the optimal configuration 8. There is a slight

discrepancy in the scale of the two views so that both attributes may be seen. All eight

configurations made some deviations to the original baseline. For example, the AR increased

from 10.7 to 11 and the SW decreased from 6800 ft 2 to 6165 ft 2 for configuration 8. Also, the

wing quarter chord sweep increased from 18 deg to 30.01 deg. The thickness-to-chord ratio did
remain constant.

i
!

Figure 7.3-8. Original GRA Baseline
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i
I

Figure 7.3-9. Optimal GRA Configuration 8

Z 4. Conclusions

The conclusions reached from this study were that a design space exists where eight different

feasible configurations meet the GRA requirements and may be considered for the proposed

DMLA. These configurations included a clean baseline aircraft (no technologies), with HLFC,

with composites, with composites and HLFC, with post-IHPTET engines, with post-IHPTET

engines and HLFC, with post-IHPTET engines and composites, and with post-IHPTET engines,

HLFC, and composites. The design space was achieved by deviating the geometric

characteristics and evaluating performance characteristics and six •system level metrics subject to

four constraints. The eight main contributing variables included wing AR, wing SW, wing

quarter chord sweep, wing TCA, SHT, SVT, TWR, and cruise Mach number. Each design

variable was subject to optimization and an optimal aircraft for each configuration was

established. The optimal settings of the design variables produced a great deal of commonality.

Actually, five optimal design variable setting were the same for all aircraft: AR of 11.0, TCA of

0.11%, SHT of 1225.0 _, SVT of 900.0 ft 2, and TWR of 0.26. The remaining variables, SW,

SWEEP, and VCMN, varied between 6290-6800 ft2, 24.88-30.01 degrees, and 0.78-0.84.
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Comparing the optimal geometric characteristics to the original baseline, Table 7.4-1, one

can see that only one of the original geometric characteristics that was under investigation

remained the same through the optimization procedure. The wing thickness-to-chord ratio stayed

constant at 11%.

Aspect Ratio
........................................................

Taper Ratio
........................................................

Area
........................................................

........................sp_ ..........................

........................_?u . r.C..h.ordSweep.........
Thickness-to-chord Ratio

i

1.27 : 1.15
................................................

0.63 °, 0.33

1037.81 _ ! 900.0 ft 2

36.24 fi ', 32.2 ft

24.4 ° ' 37 °

12% ' 9%
i i

The optimal aircraft met or exceeded the original baseline performance characteristics with

respect to all evaluation criteria. The original baseline GRA TOGW was 854,872 lbs. The range

of TOGW of the eight optimal configurations was 704,683 lbs for the clean aircraft to 596,609

lbs for the configuration with post-IHPTET engines_ HLFC, and composites. Hence, the

geometric optimization provide to be a valuable assessment.

Furthermore, a primary aspiration of this study was to assess the impact of an increase in

cruise Mach number on the performance and hence size of the aircraft. If the Mach number

Could be increased from 0.78 to 0.82-0.85, the aircraft could possibly be compatible with

commercial ventures. This goal was achieved by four configurations: 2 (0.84), 4 (0.83), 6 (0.84),

and 8 (0.83). Each one of these configurations employed HLFC technology. Configurations 2
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and 4 utilized IHPTET engines, whereas 6 and 8 used post-IHPTET engines. Configurations 2

and 4 appear to be the superior designs from the eight optimal configurations identified. Both

out-perform the other six aircraft with respect to an overall system view point.
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8. Directions for Improvement

The results obtained in this research problem demonstrate the feasibility of the DMLA

concept, and the economic analysis yielded especially promising results. However, the

specialized aircraft generally provided superior performance, allowing much room for

improvement. The economics may stand some improvement as well. In either case, the DMLA

may be improved by redesign through more radical geometric configurations, as well through the

infusion of new technologies.

8.1. Assessment of Advanced Configurations

Aside from the conventional wing-body-empennage configurations studied here, the

possibility exists to design a DMLA with alternative geometric configurations. The New World

Vistas encourages development of the following concepts. While intended for design of a GRA,

• they are largely applicable to a VLT aircraft, and therefore a DMLA.

8.1.1. Stealth Transport

Figure 8.1-1. Concept for Stealthy Military Transport.

The survivability of a GRA could be greatly improved by applying current stealth fighter

technology to a transport aircraft. This includes stealthy geometric shaping, composite structures

usage, and radar-absorbent materials application. Operations in higher-risk environments could

then be conducted more confidently (Mobility 22-23). It remains to be seen, however, if these

concepts would hinder VLT performance if applied to a DMLA.
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8.1.2. Twin Fuselages

Figure 8.1-2. Twin-Fuselage Aircraft.

Lift-induced drag decreases with increased wing aspect ratio; however, the enormous wing

spans that result from a high aspect ratio wing presents a difficult structural challenge. One

solution is to use twin side-by-side fuselages, separated by a straight wing. The wing aspect ratio

could increase from current values between 7 and 9 to as high as 12, without the accompanying

structural weight penalties (Mobility 23-24).

8.1.3. Strut-Braced Wing

Figure 8.1-3. Strut-Braced Wing Aircraft.

Another concept for achieving higher lift-to-drag through increases in wing aspect ratio is the

implementation of strut-braced wings. Wing struts are used to brace the large-span wings; the

weight of the added span is thus partially supported by the struts. This not only reduces the

weight of the wing-body fairing, it also limits wing bending due to weight (Aircraft 6).
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8.1.4. Blended Wing-Body

Figure 8.1-4. Blended Wing-Body Aircraft.

Instead of increases in aspect ratio, higher lift-to-drag may be realized by eliminating one

sizable drag component. The blended wing body blends the fuselage into the wings, reducing

fuselage drag and improving overall lift-to-drag ratio. Furthermore, the blended design

eliminates the need for concentrated wing-body fairings (Aircraft 6).

Aerospace Systems Design Laboratory Page 98



DMLA Study, Year 2 Contract NAG-I-1662

i ¸ ,

8.2. Assessment of New Technologies

A conventional baseline aircraft, such as those developed in this study, may stand to benefit

from the infusion of new, enabling technologies. Review of previous GRA and VLT work, the

recommendations of the New World Vistas, and research of other publicly available literature

revealed the following technological candidates and their associated benefits.

8.2.1. Aerodynamics

The following aerodynamic technologies could improve the lift-to-drag ratio and increase the

cruise Mach number of a DMLA.

• alteration of aircraft geometry to the advanced configurations depicted above

• flow control, via

• wing riblets (Aircraft 11)

• micro-vortex generators (Aircraft 11)

• NLFC (Global 3)

• HLFC (Kirby 11)

• circulation control (based on ASDL studies)

• supercritical airfoils (Kirby 11)

Boeing predicts that laminar flow control methods are "...the aerodynamic concept offering

the greatest potential for conserving fuel... Later results indicated that LFC can provide large

reduction in fuel usage, and lower gross weights." However, Boeing also cautions that "...the

life-cycle costs were found to be very dependent on airplane utilization, on technology

complexity costs, and on LFC total systems weight." (Application 3)

8. 2.2. Propulsion

The following propulsive technologies could decrease engine thrust-to-weight and specific

fuel consumption of a DMLA powerplant, as well as increase affordability.

• low cost-of-ownership engines (currently under study by General Electric)

• post-IHPTET engine technologies (the LMASC GRA uses IHPTET powerplants, as

specified on page four of their design report)

• lower sfc via

• high-temperature engine materials and structures (Aircraft 11)

• high bypass ratio (Aircraft 11)

8. 2. 3. Structures

The DMLA structural weight could be decreased by implementing the following

technologies.
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• advanced airframe materials, such as

• composites (Aircraft 11)

• advanced metallics (Aircraft 11)

• high-temperature, light weight materials (Aircraft 11)

• adaptive structures and smart materials

• active load/thermal control (Aircraft 11)

• active flexible wing (Technologies 1)

8.Z 4. Controls

The handling qualities and flight performance of a DMLA may benefit from these

innovations in flight control technologies.

• integrated control system architecture (encompassing avionics, engines, subsystems)

(Aircraft 11)

• thrust vectoring (Technologies 3)

• fiber-optic control signals (Aircraft 11)

• electric actuators (Aircraft 11)

Taken together, these last two technologies are termed "fly by light, power by wire" (Aircraft

11); Lockheed recommended their use to advance GRA development (Technologies 3).

8.2.5. Miscellaneous

Additional advancements include the following:

• innovative methods for design and manufacture, to lower cost (Mobility 13) (This is the

heart of the ASDL design methodology, and is briefly discussed in the next chapter.)

• mission adaptive wing (Technologies 3)

• advanced avionics (Technologies 3)
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9. Remaining Issues and Future Work

It cannot be stressed enough that this study is only the first step in the entire two-year

research effort. Many assumptions were made in this study to simplify the analysis and quickly

arrive at the conclusion as to the DMLA concept's feasibility. Often, these assumptions

prevented certain issues from becoming addressed. In a few cases, the assumptions made were

erroneous, and must be corrected in the future. Finally, the overall method was simplified to such

a degree as to yield suboptimum results.

9.1. RSM Implementation

•Response Surface Methodology (RSM) is based on a statistical approach to building and

rapidly assessing empirical models. By careful design and analysis of experiments or

simulations, the methodology seeks to relate and identify the relative contributions of the various

input variables to the system response. In most cases, the behavior of a measured or computed

response is governed by certain laws which can be approximated by a deterministic relationship

between the response and a set of design variables. Usually the exact relationship between this

response and the design variables is either too complex or unknown, and an empirical approach

is necessary to determine it. This relationship is known as a Response Surface Equation, or RSE.

Once this equation is constructed, it can be used in lieu of more sophisticated, time consuming

codes to predict and optimize the response of a sub-system or the entire system. The "optimal"

settings for the design variables are identified by finding the maximum or minimum of this

equation, and a confirmation case is run using the actual simulation code to verify the results.

Future work will implement RSM as a powerful tool to quickly and accurately provide

results, allowing for the circumvention of the difficulties encountered in this study and the

greater ease of conducting additional studies. Using RSM, future studies will no longer need to

use the FLOPS internal optimizer, thereby avoiding all of its pitfalls. FLOPS would be run

multiple times in an analysis-only mode, with each rtm containing a different combination of

variable settings as specified by a given Design of Experiments (DOE). These runs would provide

results that eventually would lead to the creation of RSEs. RSEs would become models of the

performance and economics responses reviewed here. Not only could the RSEs be optimized to

determine the truly "optimum" performance possible in the aircraft of this study, they also would

eliminate the need for manual iteration steps, such as those needed to develop the GRA variants

of the DMLA. For example, an equation for wing fuel volume as a function of wing geometry

variables could be generated. In parallel with another equation for performance (e.g., Mach

number) including the geometry terms of the wing fuel equation, the optimum-performing

configuration containing enough wing fuel volume could be quickly determined off-line.

RSM allows for additional studies to be performed as well. These studies are outlined in the
next two sections.
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9.2. Additional Design Issues

This study included no treatment of numerous design specifics, nor were trade studies

conducted as yet in this research effort. The system-level analyses performed to complete this

research problem contained conceptual-level work only; for progression to further preliminary-

level studies, the following issues must be addressed and resolved.

First, the DMLA was concluded to require a high wing, without little assessment of the

impact of this decision. The Federal Aviation Administration (FAA) has yet to certify a high-

wing transport aircraft; they may develop neither the means nor the desire to certify the VLT

variant of a DMLA. A high wing allows for no over-wing exits, nor could the wing hold the

fuselage above the water level in the event of a forced water landing. Furthermore, placing the

wing above the fuselage eliminates the noise-shielding effects of the wing - the engines are thus

placed in a direct line with the fuselage. Depending on the size and placement of the wing-body

fairing, the passenger cabin may also be affected. Additionally, for compliance with military

rules, the DMLA wing structural load factor is 2.25, far less than the 3.75 value typically

employed on commercial transports. Not only does this again raise the specter of FAA

certification, it also brings to light the limitations now placed on the maneuverability of the VLT
variant.

Second, if a twin-engine DMLA becomes possible, as this study indicates, the engines

required would have extremely high thrust output. Immediately, consideration of aircraft

performance following the loss of an engine presents itself. Could a DMLA continue flying on

one functioning powerplant? If so, what magnitude of off-axis thrust yawing would result? How

does this affect engine placement and flight control designs? These are all questions that will

need to be answered in future studies. Superseding these considerations must be a quantification

of the reliability of a twin-engine versus four-engine DMLA.

Third, as stated before, several subtleties of producing GRA and VLT variants of a DMLA

were not considered. The acquisition cost results are surely optimistic, in light of this fact. The

extra cost involved with GRA variant development from a DMLA design for a VLT must be

accounted for. The effects of production line fuselage plug installment on manufacturing costs

must be modeled as well.

Fourth, cost modeling must be expanded to include a full economic uncertainty analysis, as

part of the ASDL Robust Design Methodology. RSM comes to bear in this case, especially in

light of the uncontrollable and unpredictable nature of the economic variables that come into

play, which were assumed fixed in this study. RSEs must be generated that include these "noise"

factors, and they must be treated probabilistically in order to fully ascertain economic viability

and benefit of the DMLA. In addition, for the GRA, this work must be completed using TCM

instead of ALCCA.

An additional note to the cost modeling problem involves what would be real-world

financing of the DMLA program. If industry finances the DMLA program using private funding,
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developing it first as a VLT and then creating a GRA variant, the military's acquisition cost

would drop significantly, as this customer normally funds the entire research and development

program itself. On the other hand, if developed first as a GILA, then as a VLT, the commercial

customer stands to benefit from lower acquisition costs, benefiting from an aircraft whose

development costs were absorbed by the military. Ways to model either scenario must be

defined, and the results quantified.

Fifth, trade studies must now be performed to define the performance envelope of a DMLA.

Completion of this research problem largely entailed a purely preliminary- and system-level

analysis, which allowed for no deviations of aircraft capability. To assess the DMLA concept's

technical feasibility, it first remained to be seen if the originally specified missions could be

completed. With this now demonstrated for a DMLA, this study has provided a starting point for

future work, which must now include an assessment of wing loading versus thrust-to-weight,

payload capacity versus range, and payload capacity versus fuel required. Furthermore, the

effects of takeoff and landing field lengths on aircraft sizing must be quantified, especially in the

face of the constraints on these quantities. Additionally, the effects of flights resulting in off-

design ranges on landing field length must be assessed. An additional cost-related trade study

presents itself with the expected availability: of General Electric's work into low cost-of-

ownership engines. Aircraft performance and cost with these engines versus more "conventional"

powerplants can be compared. Here, RSM becomes an extremely useful tool. If the aircraft are

modeled mathematically, using RSEs containing terms of performance and cost, then trade

studies become a simple matter of setting the RSE terms at different values and recording the

results. Manually executing multiple instances of FLOPS or other design tools to generate the

same results becomes unnecessary.

Finally, numerous design specifics must now be considered. In the course of this study, a

number of military transport design details were overlooked. Ground cargo handling alone

provides a number of design constraints. A GRA must be compatible with present Army and

Marine Corps material handling systems, including fork lifts and transport vehicles (C-141 1).

Also, especially large aircraft (such as the C-5, and the DMLA) require landing gear with a

pneumatic "kneeling" capability to lower the main cargo deck within reach of ground handling

equipment (C-5 1). Additionally, accommodations must be provided for both the flight crew and

embarked personnel, including galleys, lavatories, and rest bunks (C-5 2). Future design work

must account for each of these details.

Some of these specifics give rise to similar considerations of a VLT variant. Cargo and

baggage handling within the cavernous cargo hold of a DMLA will certainly be difficult; it is

unlikely new ground equipment to service such an aircraft will be developed anytime soon. Thus,

a VLT variant would require not only several more cargo doors than found on current transports,

but some form of internal handling capability may also be required. Airport compatibility is

another problem. The large number of passengers embarked on a VLT aircraft would certainly

necessitate an airport capable of loading and unloading both cabin decks simultaneously. Even if

some airports expanded to include this capability, the VLT aircraft may operate to airports that

cannot do this. Thus, the VLT may again require some internal passenger loading capability.

Again, future work must include consideration of these points.
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The capabilities needed to fulfill the expected requirements of a GRA must be modeled as

well. The New World Vistas define four different transport missions: personnel airlift, rapid

cargo/troop deployment, aeromedical evacuation, and humanitarian aid-related duties. For a

single aircraft to fulfill these different roles, its payload bay must be modular and easily

reconfigurable, as in the C-141 (C-141 1). As mentioned previously, many of these missions may

require deployment into hostile areas with diminishing fighter escorts, to airfields with limited

ground support equipment. Thus, aircraft must be able to withstand battle damage and continue

operations; the wings of the C-17, for example, can withstand small arms fire - at the cost of a

wing weight equal to one-third the total aircraft empty weight (Air 122). A GILA must also

contain FEBA equipment for self reliability, such as the self-inflating undercarriage and internal

cargo unloading systems found on the C-5 (Wilkinson 38). Such airfields may be short and

unimproved, requiring STOL-capable high-lift devices and hardened landing gear (Air 120).

Survivability is as much a matter of electronic as physical warfare; the Fistas thus specify that

future aircraft must contain improved ECM systems, and the means to resist enemy jamming.
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9.3. Aerodynamic Investigation Recommendations

Even though all of the eight configurations were identified as superior to the original

baseline, only one achieved this goal without the addition of advanced technologies; that aircraft

being the clean configuration. The evaluation of these aircraft was considered from the benefit

point of view of adding new technologies. Yet, there is also risk associated with each one and it

must be quantified based on readiness and confidence. A designer must consider if those

technologies will be ready for widespread application by the time of the aircraft's introduction to

service. In addition, the designer must also be confident that those technologies are proven and

mature. For example, if a failure were to occur to the HLFC during cruise, what would be the

degradation in performance. Quantifying the risk associated with these technologies will be one
focus of future research.

In addition, the aerodynamic analysis was executed with analysis tools based on empirical

relationships. As stated previously, this over-simplified the analysis from one of accuracy to one

of approximation. There were two main reasons for this method. First, the analysis tools

AERO2S and VORLAX are incapable of analyzing compressibility effects. This inhibited the

use of these codes due to the fact that the aircraft was to be analyzed in a region of

compressibility. Second, the grid generator required by the full potential flow solver, FPS3D,

had not arrived from NASA. At the conclusion of this study, the software had arrived and was

being put in place. This method of execution should be applied and compared to the results of

this study. This would also allow validation of the internal aerodynamic capabilities of FLOPS.

Finally, one of the main objectives of the study was to establish a feasible design space of

GRA configurations. This design space would hopefully capture the needs of the VLT mission

requirements. To respond to this need, the future work should identify which aircraft is more

critical with respect to volumetric requirements; that is, does the VLT or the GRA require more

internal volume to complete its given mission. Once that critical volume is established, then

both aircraft baselines need to be readjusted to meet those volumetric requirements. For

example, if the VLT turns out to be more critical, then the GRA fuselage dimensions must be

adjusted. Furthermore, to attempt to maintain commonality on the manufacturer's production

line, could the GRA be converted from the VLT by inserting plus forward and aft of the wing?

Also, the more geometric commonalities that exist between the two aircraft further enhance the

feasibility of the DMLA. These items will be the thrust of future efforts on the GRA and
DMLA.
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9. 4. Further Studies

Following is a road map for the remainder of the DMLA research effort, due for completion

by August 15, 1998. Except for obvious circumstance, this work will be accomplished for four-

engine, conventional aircraft.

January 15 through August 15, 1997 (end of first year)

1. Definition of the overall evaluation criterion (OEC) for GRA and VLT aircraft. Also

define OEC for a DMLA, capturing its specific metrics.

2. Resolution of above issues; modeling of solutions and capabilities.

. Implementation of ASDL Robust Design Methodology to development of specialized

GILA and VLT aircraft. This work includes the results of a study performed by Michelle

Kirby in parallel with this research problem. Ms. Kirby implemented RSM to expand a

GRA point design into a design space capturing the geometry of the VLT. Also, her study

included a detailed aerodynamic analysis of the DMLA problem, resulting in the

identification of the most critical aerodynamic design variables to overall aircraft

performance.

The resulting GRA and VLT are optimized in terms of the OEC developed in (1), and

incorporate the results of (2). This work includes the economic uncertainty analysis,
outlined above.

The work performed in this step includes the trade studies outlined in the previous

section. Based on the conclusion of this study, all work performed in this time period

considers four-engine aircraft only.

4. Utilization of results in (2) and experience from this study to develop a VLT variant of a

DMLA. Apply RSM as described in section 8.2 above to derive a GRA variant.

5. Development and OEC optimization of DMLA aircraft in (4)using Robust Design

Methodology, following procedure in (2).

6. Comparison of results of (2) and (5) to demonstrate capability of DMLA. Use results to

identify areas of improvement via new technologies or configuration advancements.

August 15 through December 15, 1997

1. Risk vs. benefit assessment of technology candidates identified in this study and at end of

first year design work.

2. Forecasting of GRA and VLT needs to the year 2025. Examine maturity of technological

candidates in (1) over the 1997-2025 time frame.
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3. Detailed structural analysis of GRA, VLT, and DMLA aircraft following the work

performed for DMLA aerodynamics by Ms. Kirby.

January 15 through August 15, 1998 (conclusion of research effort)

. Application of technologies identified (in work completed to this point) to the DMLA

developed by this time. Resulting aircraft to be modeled as outlined above. Results

should be compared to quantify any benefit in terms of OEC.

2. If possible, configuration alternatives should also be investigated. This includes modeling

and preliminary analysis, to compare against all other DMLA aircraft.
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Top Level Shell Scripts

STARS

STARS is the top-level shell script which generates the GUI, copies the case file

from the library of various design; and calls all Other procedures which perform the actual

creation of the case files, execution of the analysis program, and extraction of response

surface data. This script is written in tk/tcl and executes on an IBM RS6000.

#!/usr/local/bin/wishx -f

#

#

#

#

To make stars compatible with gypsy use the following command

in the first line of this code

#!/usr/XllR6/bin/wishx -f

To make stars compatible with RS6000 use the following command

in the first line of this code

#!/usr/local/bin/wishx -f

Set the precision for expr calculations

global tcl_precision

set tcl_precision 8

set default baseline filename "baseline"

Prevents echo of info to screen

proc debug {args} {

To use debug commands, uncomment the following line

eval Sargs

# Withdraw the "." window and set toplevel frames and windows

wm withdraw .

toplevel .stars

toplevel .results

toplevel .data

set Number of Sets 1

#

# This is if I am using my account - comment in or out

#

# setting a hard coded path for the designs



set Design_Hard_Coded,Path/home/gypsy5/gt0038c/image/designs

setting a hard coded path for the procedures

set Procedure_Hard_Coded_Path /home/gypsy5/gt0038c/image/proc

#

# This is if I am using asdl stars version - comment in or out

#

#set Design_Hard_Coded_Path /home/gypsy5/asdl/defaults/AIX/stars/designs

#set Procedure_Hard_Coded_Path /home/gypsy5/asdl/defaults/AIX/stars/proc

I am telling stars to open the procedures in proc directory

to be used when called

foreach tclfile [glob SProcedure_Hard Coded_Path/*.tcl] {

source $tclfile

#set Design BBD

#set DesignType uniform

#

# This is setting up the top message frame

#

frame .stars.m

label .stars.m.l -text "Message:" -width 10 -anchor w -relief flat -bg white

label .stars.m.2 -relief flat -bg white -anchor w

pack .stars.m.l .stars.m.2 -side left -fill x -expand 1

pack °stars.m -side top -anchor w -fill x

setting up a field to put messages on the frame

proc Message {args} {

eval .stars.m.2 conf -text V'$args\"

update

}

frame .stars.ml -bg burlywood

label .stars.ml.alphalabel -text "RSE alpha" -width i0 -bg burlywood

entry .stars.ml.alpha -relief sunken -width I0

.stars.ml.alpha insert 0 i.

label .stars.ml.baselabel -text "Baseline File" -width 15 -bg burlywood

entry .stars.ml.basefile -relief sunken -width 15 \

-textvar baseline filename

.stars.ml.basefile insert 0 $default_baseline_filename

label .stars.ml.spacer -width 40 -bg burlywood

pack .stars.ml.spacer .stars.ml.alphalabel .stars.ml.alpha .stars.ml.baselabel

.stars.ml.basefile -side left -fill x



pack .stars.ml -side top -fill x -anchor center

#

frame .stars.design -bg navy -border 5

menubutton .stars.design.test -text "Select a Design:" \

-bg grey -activebackground LightCoral \

-relief raised -width 35 -menu .stars.design.test.menu -anchor w

menu .stars.design.test.menu -bg grey

# setting up drop menu for screening DoE files

.stars.design.test.menu add cascade -label "Screening" \

-menu .stars.design.test.menu.screening

setting up drop menu for RSE DoE files

.stars.design.test.menu add cascade -label "RSE" \

-menu .stars.design.test.menu.rse

menu .stars.design.test.menu.screening -bg grey

menu .stars.design.test.menu.rse -bg grey

button .stars.design.generate -relief raised -text \

"Copy Cases for Design from input baseline file" -command GenerateCases \

-bg grey -activebackground pluml -width 40

label .stars.design.spacer -width 29

label .stars.design.spacer2 -width 29

pack .stars.design.spacer .stars.design.test .stars.design.generate

.stars.design.spacer2 -side left

pack .stars.design -anchor w

This is setting up the drop menu for the Screening directory

foreach file [isort [glob -nocomplain SDesign_Hard_Coded_Path/Screening/*]] {

set number [file tail Sfile]

.stars.design.test.menu.screening add cascade -label $number \

-menu .stars.design.test.menu.screening.$number

menu .stars.design.test.menu.screening.$number -bg pluml

foreach file2 [isort [glob -nocomplain Sfile/*]] {

set type [file tail Sfile2 ]

.stars.design.test.menu.screening.$number add command -label

$type \

-command "global Design DesignType Number of Sets

SorR;set Number of Sets Snumber; set Design [file rootname $type]; set DesignType [file

extension $type];.stars.design.test conf -text \"Design: $type, $number

variablesV';FillSets;set SorR Screening"

debug puts stdout " Snumber [file rootname Stype] [file extension

$type]"



This is setting up the dropmenufor the RSEdirectory

foreachfile [isort [glob-nocomplain$Design_Hard_Coded_Path/RSE/*]]{

set number[file tail Sfile]
.stars.design.test.menu.rseaddcascade-label Snumber\

-menu.stars.design.test.menu.rse.$number
menu.stars.design.test.menu.rse.$number-bgpluml

foreachfile2 [isort [glob-nocomplain$file/*]] {

set type [file tail $file2 ]
.stars.design.test.menu.rse.$numberaddcommand-label $type

\
-command"global DesignDesignTypeNumberof Sets

SorR;setNumberof Sets$number;set Design[file rootname$type]; set DesignType[file
extensionStype];.stars.design.testconf-text \"Design:$type,$number
variablesV';FillSets;setSorRRSE"

debugputs stdout" $number[file rootname$type] [file extension
$type]"

#

frame.

Createthe framefor the window

stars.header

label .stars.header.number-text "VariableNumber"-width 31
label .stars.header.variable-text "Variable"-width i0
label .stars.header.name-text Namelist-width 27
label .stars.header.low-text Minimum-width20
label .stars.header.high-text Maximum-width 20
label .stars.header.prefix-text "Prefixes"-width 25

pack.stars.header.number.stars.header.variable.stars.header.name
.stars.header.low.stars.header.high\
.stars.header.prefix-side left

pack.stars.header-side top -anchorw

# Lookfor the DoEthat userhaschosenbylooking for the DoEsetupfile in
directory designs

procGenerateCases{} {

globalNumberof CasesDesign_Hard_Coded_PathSorRDesignDesignType
Numberof SetsMatrix baselinefilename



if ![file exists $Design_Hard_Coded_Path/$SorR/$Number of Sets/$DesignSDesignType]

{Message "This design/variable combination does not exist.";return}

"r" ]

set file [open SDesign_Hard_Coded_Path/$SorR/$Number of Sets/$DesignSDesignType

set Number of Cases 0

while ![eof $file] {

Wait."

set line [gets Sfile]

if [eof Sfile] break

incr Number of Cases 1

set Matrix($Number of Cases) \{$1ine\}

puts stdout $1ine

}

close Sfile

Generate copies of the baseline file to be manipulated later

for { set i 1 } { $i <= $Number of Cases } {incr i 1 } {

Message "Copying case file case $i from baseline file. Please

exec cp Sbaseline filename case$i

update

}

Message "Done creating $Number of Cases case files of the DOE."

.stars.bottom. create conf -state normal

proc CheckCases {} {

global Number of Cases

if { SNumber of Cases > 400 }

set Number of Cases 64

}

}

proc FillSets {} {

global Number of Sets

foreach set [winfo children .stars] {

if { $set == ".stars.header" II Sset == ".stars.sets" if $set ==

".stars.cases" I} Sset == ".stars.m" IS Sset == ".stars.design" IS Sset == ".stars.ml" }

{continue}

destroy Sset

}

for {set i i} { $i <= $Number of Sets} { incr i i} {

frame .stars.set$i



Variable$i

Namelist$i

Minimum$i

Maximum$i

Leader$i

label .stars.set$i.label$i -text "$i" -width 20

entry .stars.set$i.variable$i -width 20 -relief sunken -textvar

entry .stars.set$i.namelist$i -width 20 -relief sunken -textvar

entry .stars.set$i.minimum$i -width 20 -relief sunken -textvar

entry .stars.set$i.maximum$i -width 20 -relief sunken -textvar

label .stars.set$i.spacer$i -width 2

entry .stars.set$i.leader$i -width 20 -relief sunken -textvar

bind .stars.set$i.variable$i <Tab> "focus .stars.set$i.namelist$i"

bind .stars.set$i.namelist$i <Tab> "focus .stars.set$i.minimum$i"

bind .stars.set$i.minimum$i <Tab> "focus .stars.set$i.maximum$i"

bind .stars.set$i.maximum$i <Tab> "focus .stars.set$i.variable$i"

pack .stars.set$i.label$i .stars.set$i.variable$i

.stars.set$i.namelist$i \

.stars.set$i.minimum$i .stars.set$i.maximum$i \

.stars.set$i.spacer$i .stars.set$i.leader$i -side left

pack .stars.set$i -side top

update

frame .stars.bottom -bg burlywood

button .stars.bottom.create -relief raised -text \

"Create Case Files From Above Variables" -command

".stars.bottom.create conf -state disabled;CreateFiles" \

-bg grey -activebackground LightCoral -width 50 -state disabled

frame .stars.bottom. frame -bg lightgrey

button .stars.bottom. frame.run -relief raised -text \

"Run ALCCA" -command ".stars.bottom.frame.run conf -state disabled;

RunALCCA" \

-bg grey -activebackground LightCoral -width 50 -state disabled

button .stars.bottom.frame.flops585 -relief raised -text \

"Run FLOPS V5.85" -command ".stars.bottom. frame.flops585 conf -

state disabled; Runflops585" \

-bg grey -activebackground LightCoral -width 50 -state disabled

button .stars.bottom.frame.flops57 -relief raised -text \

"Run FLOPS V5.7" -command ".stars.bottom.frame.flops75 conf -state

disabled; Runflops57" \

-bg grey -activebackground LightCoral -width 50 -state disabled

button .stars.bottom.frame.kirby -relief raised -text \

"Run Michelle's Special" -command ".stars.bottom. frame.kirby conf -

state disabled; Kirby" \

-bg grey -activebackground LightCoral -width 50 -state disabled

.stars.bottom.frame.aero -relief raised -text \

"Run Aero Codes" -command ".stars.bottom.frame.aero conf -state

-bg grey -activebackground LightCoral -width 50 -state disabled

button

disabled ;Runaero" \



button .stars.bottom.quit-relief raised-text \
"QUITANDDON'TSAVE"-commandexit \
-bgPaleVioletRed-activebackgroundpluml-fg black-width 50-

border8
label .stars.bottom.image-relief raised-text \

"STARSVer3.0Nov16,96 Note:Thiseasyto useinterface
complimentsof Michelle&Mark"\

-bgplum4-fg white

pack.stars.bottom.image-side bottom-fill x
pack.stars.bottom.create-side top

pack.stars.bottom.frame.run.stars.bottom.frame.flops585
.stars.bottom.frame.flops57.stars.bottom.frame.kirby\

.stars.bottom.frame.aero-side top
pack.stars.bottom.frame-side left
pack.stars.bottom.quit-side right

pack.stars.bottom-side bottom-fill x

}

FillSets

Mainprogramendshere.Therest is procedures

CreateFiles.tcl

This script control the creation of the cases files generated by the DoE chosen

from the top-level script STARS. This procedure looks into every case file and switches

the appropriate variable with the values entered into the GUI with the corresponding

value of the DoE table. A special option is inserted if the basleine file is called "kirby".

This option switched the low speed drag polars in the case file being created.

proc CreateFiles {} {

global Number of Sets Matrix Number of Cases alpha

set flag [.stars.ml.basefile get]

set alpha [.stars.ml.alpha get]

Message "Verifying Fields"

for {set i I} { $i <= SNumber of Sets} { incr i i} {

global Variable$i Namelist$i Minimum$i Maximum$i Leader$i

# global Variable$i Namelist$i Minimum$i Midpoint$i Maximum$i Leader$i

if { [set [set temp Variable$i]] == "" } {Message "Please fix empty

fields";return}

if { [set [set temp Namelist$i]] == "" } {Message "Please fix empty

fields";return}



if {

fields";return}

# if {

fields";return}

if {

fields" ;return}

}

[set [set temp Minimum$i]] == "" } {Message "Please fix empty

[set [set temp Midpoint$i]] == "" } {Message "Please fix empty

[set [set temp Maximum$i]] == "" } {Message "Please fix empty

for {set i i} { $i <= $Number of Cases} { incr i I} {

Message "Creating Case File $i -- Please Wait."

I am switching out the specific low speed drag polars from files low$i

set k 0

if { Sflag == "kirby" } {

set lowfile [open low$i "r"]

while ![eof $1owfile] {

incr k 1

set isline [gets $1owfile]

if [eof $1owfile] break

if { $k == 1 ) {

lassign $1sline cll c12 c13 c14 c15 c16 c17 c18 c19

cll0

cdl0

} else {

lassign $1sline cdl cd2 cd3 cd4 cd5 cd6 cd7 cd8 cd9

}
}
close $1owfile

set isnewfile [ open istemp "w" ]

for file isnewline case$i {

lassign $1snewline wl

if {$wl .... CLTO=" } {

puts $1snewfile [format "

CLTO=%6.4f,%6.4f,%6.4f,%6.4f,%6.4f,%6.4f,%6.4f,%6.4f,%6.4f,%6.4f, " $cli $c12 $c13 $c14

$c15 $c16 $c17 $c18 $c19 $cli0]

} else {

puts $1snewfile $1snewline

}
}
close $1snewfile

exec mv istemp case$i

set isnewfile [ open istemp "w" ]

for file isnewline case$i {

lassign $1snewline w3

if {$w3 == "CLLD=" } (

puts $1snewfile [format "

CLLD=%6.4f,%6.4f,%6.4f,%6.4f,%6.4f,%6.4f,%6.4f,%6.4f,%6.4f,%6.4f, " $cli $c12 $c13 $c14

$c15 $c16 $c17 $c18 $c19 $cli0]

) else {

puts $1snewfile $1snewline

}
}
close $1snewfile

exec mv istemp case$i

set isnewfile [ open istemp "w" ]

for file isnewline case$i {

lassign $1snewline w4

if {$w4 == "CDLD ='' } {

puts $1snewfile [format

"CDLD=%6.4f,%6.4f,%6.4f,%6.4f,%6.4f,%6.4f,%6.4f,%6.4f,%6.4f,%6.4f," $cdl $cd2 $cd3 $cd4

$cd5 $cd6 $cd7 $cd8 $cd9 $cdl0]

} else {

puts $1snewfile $1snewline

}
}
close $1snewfile

exec mv istemp case$i



iI • •

set isnewfile [ open istemp "w" ]

for file isnewline case$i {

lassign $1snewline w4

if {$w4 == "CDTO =" } {

puts $1snewfile [format "

CDTO=%6.4f,%6.4f,%6.4f,%6.4f,%6.4f,%6.4f,%6.4f,%6.4f,%6.4f,%6.4f, " $cdl $cd2 $cd3 $cd4

$cd5 $cd6 $cd7 $cd8 $cd9 $cdl0]

} else {

puts $1snewfile $1snewline

)

}

close $1snewfile

exec mv Istemp case$i

}

set line ""

Matrix ($i) ] ] O]

for {set j l} { $j <= $Number of Sets} { incr j i} {

debug puts stdout "Michelle: [lindex [lindex

[expr $j-l] ] "

[set [set temp

global SorR

if {$SorR == "Screening"} {

switch -- [lindex [lindex [set [set temp Matrix($i)]] 0]

[expr $j-l] ] {

"-i" { set value [set [set temp MinimumSj]] }

"0" { set value [expr ([set [set temp

Maximum$j]]+[set [set temp Minimum$j]])/2.] }

"i" { set value [set [set temp Maximum$j]] }

}

switch -- [set [set temp VariableSj]] {

"VCMN" {

append line "OPTION PMACH Svalue in"

append line "CONFIN VCMN $value in"

append line "COPER SUBMACH $value \n"

append line "MISSIN CRMACH\[I\] $value in"

append line "MISSIN CRMACH\[2\] 0.3 in"

append line "MISSIN CRMACH\[3\] Svalue in"

}

"TCA" {

append line "CONFIN TCA $value\n"

append line "WTIN TOC\[I\] Svalue in"

append line "WTIN TOC\[2\] Svalue in"

append line "WTIN TOC\[3\] $value \n"

}

"LAMINAR" {

append line "AERIN TRUW $value in"

append line "AERIN TRLW $value in"

append line "AERIN TRUH Svalue in"

append line "AERIN TRLH Svalue \n"

append line "AERIN TRUV $value in"

append line "AERIN TRLV Svalue in"

append line "AERIN TRUN $value in"

append line "AERIN TRLN $value in"

}

"SL" {

if { $value <= 5000. } {

append line "COPER SL\[2\] Svalue in"

} elseif { Svalue == 5000. } {

append line "COPER SL\[2\] Svalue in',

} elseif { $value >= 5000. } {

append line "COPER SL\[2\] Svalue in"

}

}

"LC" {

append line "CMAN LEARN1 $value \n"

append line "CMAN LEARN2 Svalue in"



appendline "CMANLEARNAI$valuein"
appendline "CMANLEARNA2$value\n"
appendline "CMANLEARNASl$value\n"
appendline "CMANLEARNAS2$value\n"
appendline "CMANLEARNFEI$value\n"
appendline "CMANLEARNFE2$value\n"

Leader$j]]$valuein"

Leader$j]]$value\n"

}
"LF" {

appendline "CMANRE$value\n"
appendline "CMANRT$value\n"
appendline "COPERRL$value\n"

Namelist$j]] [set [set tempVariable$j]]

appendline "COPERCLF[set [set temp

appendline "COPERFLF[set [set temp

appendline
[set [set tempLeader$j

if { $value==798.

"[set [set temp
]]$value\n "
) {

appendline "CMANNVEH(1)Svalue\n"
appendline "CMANRATE\[1\]2. \n"
appendline "CMANRATE\J2\]4. \n"
appendline "CMANRATE\J3\]5. \n"
appendline "CMANRATE\J4\]5.5 \n"
appendline "CMANRATE\[5\]6. \n"
appendline "CMANRATE\[6\]6. \n"
appendline "CMANRATE\[7\]6.5 \n"
appendline "CMANRATE\[Ski7. \n"
appendline "CMANRATE\J9\]7. \n"
appendline "CMANRATE\J10\]6.5 \n"
appendline "CMANRATE\[11\]6. \n"
appendline "CMAN

} elseif { Svalue==549.
appendline "CMAN
appendline "CMAN
appendIine"CMAN
appendline "CMAN
appendline "CMAN
appendline "CMAN
appendline "CMAN
appendline "CMAN
appendline "CMAN
appendline "CMAN
appendline "CMAN
appendline "CMAN
appendline "CMAN

} elseif { $value==300.
appendline "CMAN
appendline "CMAN
appendline "CMAN
appendline "CMAN
appendline "CMAN
appendline "CMAN
appendline "CMAN
appendline "CMAN
appendline "CMAN
appendline "CMAN
appendline "CMAN
appendline "CMAN
appendline "CMAN

RATE\[12\] 5. \n"
} {

NVEH(1)$value\n"
RATE\[i\] 2 \n"
RATE\[2\] 4 \n"
RATE\[3\] 5 \n"
RATE\J4\]5 5 \n"
RATE\[5\] 6 in"
RATE\[6\] 6 \n"
RATE\[7\]6 5 \n"
RATE\[8\]6 5 in"
RATE\[9\] 4.25 in"
RATE\[I0\] 0. \n"
RATE\[ii\] 0. \n"
RATE\[12\] 0. \n"
} {

NVEH(1)$valuein"
RATE\[I\] I. \n"
RATE\[2\]2. \n"
RATE\[3\]3. \n"
RATE\[4\] 3. \n"
RATE\[5\] 3. \n"
RATE\[6\] 4. \n"
RATE\[7\] 4. \n"
RATE\[8\] 3. \n"
RATE\[9\] 2. \n"
RATE\[i0\] 0. \n"
RATE\[Ii\] 0. \n"
RATE\[12\] 0. \n"

}
}
"default" {

debugputsstdout"$i Sj Svalue"



appendline "[set [set tempNamelist$j]]
[set tempVariable$j]] [set [set tempLeader$j]]$value\n "

)
)

} else {
# putsstdout"MichelleRSESalpha[set [set tempVariableSj]] [set [set temp
Minimum$j]][set [set tempMaximum$j]]"

set low [expr-l*$alpha]
set high [exprSalpha]

switch-- [lindex [lindex [set [set tempMatrix($i)]] 0]
#putsstdout"Slow$high"

[expr$j-l] ] {
"-I" {

Maximum$j]]+[set[set tempMinimum$j]])/2.]

[set

tempMaximum$j]]-$mid)/$alpha)]

Maximum$j]]+[set[set tempMinimum$j]])/2.]
"I" {

#putsstdout "$valuetestl"

set mid [expr ([set [set temp

if { $alpha==I. } {
set value [set [set tempMinimum$j]]

} else {
set value [expr ($mid- ([set [set

)
)
"0" { set value [expr([set [set temp

}

if { $alpha==i. } {
set value [set [set tempMaximum$j]]

} else {
set mid [expr ([set [set temp

Maximum$j]]+[set[set tempMinimum$j]])/2.]

tempMaximum$j]]-$mid)/$alpha)]
}

}
"default" {

Matrix($i)]] 0] [expr$j-l] ] ==Slow} {

#putsstdout"$valuetest2"

Matrix($i)]] 0] [expr$j-l] ] ==$high} {

set value[expr ($mid+ ([set [set

if { [lindex [lindex [set [set temp

set value[set [set tempMinimumSj]]

} else { [lindex [lindex [set [set temp

set value [set [set tempMaximumSj]]
}

}
}
switch-- [set [set tempVariable$j]]

"LAMINAR"{
appendline "AERINTRUWSvalue\n"
appendline "AERINTRLW$value\n"
appendline "AERINTRUH$value\n"
appendline "AERINTRLH$value\n"
appendline "AERINTRUV$value\n"
appendline "AERINTRLV$value\n"
appendline "AERINTRUN$value\n"
appendline "AERINTRLN$value\n"

}

"VCMN" {

append line "OPTION PMACH $value \n"

append line "CONFIN VCMN Svalue \n"

append line "COPER SUBMACH $value \n"

append line "MISSIN CRMACH\[I\] Svalue \n"

append line "MISSIN CRMACH\[2\] 0.3 \n"

append line "MISSIN CRMACH\[3\] Svalue \n"

append line "CONFIN TCA $value\n"



Leader$j]]$valuein"

Leader$j]]$value\n"

Namelist$j]]

appendline "WTINTOC\[I\] Svalue\n"
appendline "WTINTOC\[2\]Svalue\n"
appendline "WTINTOC\[3\]Svalue\n"

if { Svalue<=5000.} {
appendline "COPERSL\[2\] Svalue\n"

} elseif { Svalue==5000.) {
appendline "COPERSL\[2\] $value\n"

} elseif { Svalue>=5000.} {
appendline "COPERSL\[2\] Svalue\n"

)

append line "CMAN LEARN1 $value \n"

append line "CMAN LEARN2 Svalue \n"

append line "CMAN LEARNAI Svalue \n"

append line "CMAN LEARNA2 Svalue \n"

append line "CMAN LEARNASl Svalue \n"

append line "CMAN LEARNAS2 Svalue \n"

append line "CMAN LEARNFEI $value \n"

append line "CMAN LEARNFE2 Svalue \n"

)
"LR" {

[set [set temp VariableSj]]

append line "CMAN RE $value \n"

append line "CMAN RT $value \n"

append line "COPER RL $value \n"

append line "COPER CLF [set [set temp

append line "COPER FLF [set [set temp

append line "[set [set temp

[set [set temp Leader$j]]$value \n "

if { $value == 798. } {

append line "CMAN

append line "CMAN

append line "CMAN

append line "CMAN

append line "CMAN

append line "CMAN

append line "CMAN

append line "CMAN

append line "CMAN

append line "CMAN

append line "CMAN

append line "CMAN

append line "CMAN

} elseif { Svalue == 549.

append line "CMAN

append line "CMAN

append line "CMAN

append line "CMAN

append line "CMAN

append line "CMAN

append line "CMAN

append line "CMAN

append line "CMAN

append line "CMAN

append line "CMAN

append line "CMAN

append line "CMAN

} elseif { Svalue == 300.

append line "CMAN

NVEH(1) $value \n"

RATE\ [I\] 2. \n"

RATE\[2\] 4. \n"

RATE\ [3\] 5. \n"

RATE\ [4\] 5.5 in"

RATE\ [5\] 6. in"

RATE\ [6\] 6. in"

RATE\ [7\] 6.5 \n"

RATE\ [8\] 7. \n"

RATE\ [9\] 7. in"

RATE\ [i0\] 6.5 \n"

RATE\ [ii\] 6. \n"

RATE\ [12\] 5. \n"

) {

NVEH(1) Svalue \n"

RATE\ [i\] 2. \n"

RATE\[2\] 4. \n"

RATE\ [3\] 5. \n"

RATE\ [4\] 5.5 \n"

RATE\[S\] 6. \n"

RATE\ [6\] 6. \n"

RATE\ [7\] 6.5 \n"

RATE\ [8\] 6.5 \n"

RATE\ [9\] 4.25 \n"

RATE\ [i0\] 0. \n"

RATE\ [II\] 0. \n"

RATE\ [12\] 0. \n"

} {
NVEH(1) Svalue \n"



[set temp Variable$j]]

)

}

"default" {

append line "CMAN RATEi[I\] i. \n"

append line "CMAN RATEi[2i ] 2. \n"

append line "CMAN RATEi[3\] 3. \n"

append line "CMAN RATE\[4i] 3. \n"

append line "CMAN RATE\[5\] 3. \n"

append line "CMAN RATE\J6\] 4. in"

append line "CMAN RATE\J7\] 4. in"

append line "CMAN RATEi[8i] 3. \n"

append line "CMAN RATEi[9\] 2. \n"

append line "CMAN RATEi[10\] 0. \n"

append line "CMAN RATE\[IIi] 0. \n"

append line "CMAN KATEi[12\] 0. in"

puts stdout "$i $j $value"

append line "[set [set temp Namelist$j]]

[set [set temp Leader$j]]$value \n "

}
}

}

echo $1ine i tsw -input case$i -output temp -i case

debug puts stdout "echo $1ine i tsw -input case$i -output temp -"

update

catch { exec echo $1ine i tsw -input case$i -output temp - }

update

exec mv temp case$i

update

Message "Creating Case Files is now completed."

.stars.bottom.frame.run conf -state normal

.stars.bottom.frame.kirby conf -state normal

.stars.bottom.frame.aero conf -state normal

.stars.bottom.frame.flops585 conf -state normal

.stars.bottom.frame.flops57 conf -state normal

[set

Kirby.tcl

This procedure controls the execution of FLOPS/ALCCA and extracts the

response surface data desired, i.e. TOWG, Fuel weight, Empty weight, Wing weight,

VAPP, LdgFL, TOFL, block time, Acquisition cost, and RDT&E costs. Also, .there is a

time limit of 7 minutes put on any one case file execution. This is more than an adequate

limit for a normal case, but, if one cases were to fail and get trapped in an infinite loop,

the script would halt the execution of that case and continue to the next.



proc Kirby {} {

• stars.bottom.frame.flops585 conf -state disabled

• stars.bottom, frame.flops57 conf -state disabled

.stars.bottom. frame.kirby conf -state disabled

.stars.bottom. frame.run conf -state disabled

.stars.bottom.frame.aero conf -state disabled

global Number of Sets Matrix Number of Cases

open the ouput files to write info desired

set outputl [open "Fuel_capacity" "w" ]

set output2 [open "Wing_wt .... w" ]

set output3 [open "Empty_wt" "w" ]

set output4 [open "Fuel wt" "w" ]

set output5 [open "TOGW _ "w" ]

set output6 [open "S_Wing" "w" ]

set output7 [open "VAPP" "w" ]

set output8 [open "LDGFL" "w" ]

set output9 [open "TOFL" "w" ]

set outputl0 [open "TIME .... w" ]

set outputll [open "ACQ .... w" ]

set outputl2 [open "RDTE .... w'! ]

for {set i I} { $i <= $Number of Cases} { incr i I} {

update

Message "Running FLOPS/ALCCA V5.85 Case File $i. Please Wait."

debug puts stdout "exec flops_alcca < case$i > case$i.out"

set test [catch "eXec flops_alcca < case$i > case$i.out "]

# Five Minutes

set MAX_TIME [expr 7*60]

set START_TIME [getclock]

set PID [exec flops alcca < case$i > case$i.out &]

while { 1 } {

update

switch [catch {exec ps -p $PID} ] {

"0" {

set TIME [expr [getclock]-$START TIME]

if { $TIME >= $MAX TIME } {

catch { kill 9 SPID }

Message "case$i has been KILLED. Run time

is greater than $MAX_TIME seconds."

grep out the info that you want

update

sleep 2

break

set line [exec grep "TOTAL FUEL CAPACITY" case$i.out

puts $outputl "Case $i: $1ine"



set line [execgrep" WING" case$i.out]
puts$output2"Case$i: $1ine"

case$i.out]
set line [execgrep"

puts$output3"Case$i:

OPERATINGWEIGHTEMPTY"

$1ine"

case$i.out]
set line [execgrep"

puts$output4"Case$i:

MISSIONFUEL"

$1ine"

set line [execgrep"RAMP(GROSS)WEIGHT"case$i.out

puts$output5"Case$i: $1ine"

set line [execgrep" REFERENCEWINGAREA"case$i.out]
puts $output6"Case$i: $1ine"

set line [execgrep"VAPP="case$i.out]
puts $output7"Case$i: $1ine"

set line [execgrep"FARLDG="case$i.out]
puts$output8"Case$i: $1ine"

set line [execgrep"FAROFF=" case$i.out]
puts $output9"Case$i: $1ine"

set line [execgrep"BLOCKTIME"case$i.out]
puts $outputl0"Case$i: $1ine"

(includingspares), case$i.out]
set line [execgrep"AVERAGEUNITAIRPLANECOST

puts $outputll "Case$i: $1ine"

EVALUATION"case$i.out]
set line [execgrep"RESEARCH,DEVELOPMENT,TEST,AND

puts $outputl2"Case$i: $1ine"

}

}

}

execmvdrag_stuffdrag_stuff$i

break

close the ouptutfiles of interest

close $outputl

close $output2

close $output3

close $output4

close $output5

close $output6

close $output7

close $output8

close $output9

close $outputl0

close $outputll



close$outputl2

Message"FLOPSVersion5.85executionis nowcompleted!"

Low Speed Script and Codes

RUN

This shell script controls the extracting of information from the hermite geometry

file, execution of the "convert" code, recompilation of the information from "convert"

into input files for BDAP and AERO2S, execution of BDAP and AERO2S, and

extraction of low speed drag polar information from those outputs.

#!/usr/local/bin/wishx -f

# for RS #!/usr/local/bin/wishx -f

# for gypsy #!/usr/XllR6/bin/wishx -f

exec mv mission flight

set flight [open "flight" "r"]

set mission [open "mission.info .... w"]

while ![eof $flight] {

set line [gets Sflight]

if [eof $flight] break

if {$1ine == ""} break

lassign $1ine case mach alt

}

set ifile [open "baseline.hrm" "r"]

set fuse [open "fuse.info" "w"]

set wing [open "wing.info" "w"]

set v_tail [open "v_tail.info" "w"]

set h_tail [open "h tail.info" "w"]

set engine [open "engine.info" "w"]

set outputl [open "bdap.in .... w"]

set output2 [open "aero2s.in" "w"]

set geom [open "baseline.ram .... r"]



# Get fuselage information from the hermite file from RAM

# and write it to a temporary file called fuse.info

for { set i 1 } { $i <= 9 } { incr i 1 }

set temp "[gets $ifile]"

}

set j 1

while ![eof $ifile] {

set line [gets $ifile]

if [eof $ifile] break

if {$1ine == "") break

lassign $1ine X Y Z

incr j 1

if { SX <= 1.0 && Sj >= 20 } continue

if {$Y < 0.0} continue

if { SX > 0.001 && SX < 1.0 } continue

if { $j > 976} break

puts Sfuse "$1ine"

}

puts Sfuse ""

# Note: I had to insert an extra line at the end of each info file

# because when the fortran program "convert" ran, it would

# reach the end of the file and result in a core dump, not

# one to be proud of I might add, and would halt execution

# Get engine information from the hermite file from RAM

# and write it to a temporary file called engine.info

while ![eof $ifile] {

set line [gets $ifile]

if [eof $ifile] break

if {$1ine == ""} break

}

for { set i 1 } { $i <= 5 } { incr i 1 )

set temp "[gets $ifile]"

}

while ![eof $ifile] {

set line [gets $ifile]

if [eof $ifile] break

if {$1ine == ""} break

lassign $1ine X Y Z

puts Sengine "$1ine"

}

puts Sengine ....

# Get horizontal tail information from the hermite file from RAM

# and write it to a temporary file called h_tail.info

for { set i 1 } { $i <= 5 } { incr i 1 } {

set temp "[gets $ifile]"

)

while ![eof $ifile] {

set line [gets $ifile]

i_ [eof $ifile] break

if {$1ine == ""} break

lassign $1ine X Y Z

puts $h_tail "$1ine"



)
puts $htail ....

# Getvertical tail informationfromthe hermitefile fromRAM
# andwrite it to a temporaryfile called v tail.info

for { set i 1 } { $i <=5 ) { incr i 1 }
set temp"[gets $ifile]"

}

while ![eof $ifile] {
set line [gets $ifile]
if [eof $ifile] break
if {$1ine==""} break
lassign$1ineX Y Z
putsSv_tail "$1ine"

}
puts Svtail ""

# Getwinginformationfromthe hermitefile fromRAM
# andwrite it to a temporaryfile calledwing.info

for { set i 1 } { $i <=5 } { incr i 1 ) {
set temp"[gets $ifile]"

}

while ![eof $ifile] {
set line [gets$ifile]
if [eof $ifile] break
if {$1ine== ""} break
lassign$1ineX Y Z
puts Swing"$1ine"

}
puts Swing....

close Sfuse
close Swing
close Sv tail

close Sh tail

close Sengine

close $ifile

set geom [open "baseline.ram ....r"]

set i 1

while ![eof Sgeom] {

incr i 1

set line [gets Sgeom]

if [eof Sgeom] break

if { $i == 359 } {

lassign $1ine chord dummy dummy

}

}

close Sgeom

#puts stdout "$mach Salt $chord"

puts Smission "$mach Salt $chord"



putsSmission""

closeSmission
closeSflight

puts stdout"Runningconvert"
execconvert
puts stdout "Finished running convert"

exec mv flight mission

exec rm mission.info

set bdap [open "bdap.info ....r"]

# Formatting bdap.in through various puts statements and scripts

puts $outputl "GEOM NEW"

puts $outputl "GLOBAL AERO ANALYSIS STUDY"

#

_234567890_234567890_23456789__23456789__23456789__23456789__23456789__234567890_23456789_

puts $outputl " 1 1 1 1 1 1 0 20 12 1 17 20 1 15 1 I0 1 10

CONTROL"

# Scan through the *.ram file to get the reference area of the wing

set geom [open "baseline.ram ....r"]

set i 1

while ![eof $geom] {

incr i 1

set line [gets Sgeom]

if [eof $geom] break

if { $i == 357 } {

lassign $1ine ref area dummy dummy

)

}

close Sgeom

set geom [open "baseline.ram" "r"]

set i 1

while ![eof Sgeom] {

incr i 1

set line [gets Sgeom]

if [eof Sgeom] break

if { $i == 360 } {

lassign $1ine xbar dummy dummy dummy dummy

}

)

puts $outputl [format "%7.1f%7.2f%7.2f" Sref_area $chord Sxbar]

puts $outputl " .00 .50

XAF"

puts $outputl " 95.00 100.00

XAF"

.75 2.50 7.50 20.00 30.00 50.00 70.00 85.00

# Grab most of the info required for BDAP from the file bdap.info

# which was written by convert program

while ![eof $bdap] {

set line [gets $bdap]

if [eof $bdap] break

if {$1ine == "") break

puts $outputl "$1ine"



# Nowprint the controls for the SKFRmodulein BDAP
# Eventually,I wantto reada Machnumberfromsomewhere
# andautomaticallyput it in the file

set temp[exprSalt/1000]
puts $outputl "SKFR"
puts $outputl "SKINFORGRA"
puts $outputl"i 1 1 1 I"
puts $outputl"I."
puts $outputl [format"%4.2f
#puts$outputl "0.82 42.0
puts $outputl"END"

%4.1f 0.0 1.0" SmachStemp]
0.0 1.0"

close$outputl

puts stdout"RunningBDAP"

execcp bdap.inlar12237.input
set test [catch"execlar.exe"]

execcp lar12237.outputbdap.out
eval execrm [glob lar*]

putsstdout"FinishedrunningBDAP:results in file bdap.out"

# Start to formatinput for AERO2Sinput file
# Note:All gapsimplythat somethingis missingthereor needed

#close$newwing
#setnewwing[open"wing.stuff.... r"]
#set i 1
#while![eof $newwing]{
#
#
#
#
#
#
#}

incr i 1
set line [gets Snewwing]
if [eof Snewwing]break
if {$i ==21) {

set half span[string range[string trimleft $1ine]6 12]

set aeroinfo [open"aero.info....r"]
while ![eof $aeroinfo]{

set line [gets Saeroinfo]
if [eof Saeroinfo]break
if {$1ine== "" ) {

puts $output2[format" SREF= %7.3f,"$ref_area]
puts $output2[format" CBAR= %7.3f," $chord]

puts $output2 [format " XMC = %7.3f," Sxbar]

) else {

puts $output2 "$1ine"

}

)

close Saeroinfo

set thick [open "thick$case ....r"]

set i 1

while ![eof $thick] {

set line [gets Sthick]



if [eof $thick] break
if { $i ==i} {

lassign$1inetbtoc tbetatbroc
)
incr i 1

}
puts $output2[format" TBTOC= %5.3f,%5.3f,"Stbtoc$tbtoc]
puts $output2[format" TBETA= %5.3f,%5.3f,"Stbeta$tbeta]
puts $output2[format" TBROC= %5.3f,%5.3f,"$tbroc$tbroc]

close Sthick

set aeroinfo2[open"aero.info2....r"]
while ![eof Saeroinfo2]{

set line [gets Saeroinfo2]
if [eof Saeroinfo2]break
puts $output2"$1ine"

}

closeSaeroinfo2

set hthick [open"hthick....r"]
set i 1
while ![eof Shthick] {

set line [gets $hthick]
if [eof $hthick]break
if { $i ==I} {

lassign$1inetbtoc2tbeta2tbroc2
}
incr i 1

}
puts$output2[format" TBTOC2= %5.3f,%5.3f,"$tbtoc2$tbtoc2]
puts $output2[format" TBETA2= %5.3f,%5.3f,"$tbeta2$tbeta2]
puts $output2[format" TBROC2= %5.3f,%5.3f,"Stbroc2$tbroc2]
puts $output2" \SEND"

close$hthick
close$output2

puts stdout"RunningAERO2S...Pleasehold"

set test2 [catch"execaero2s< aero2s.in> aero2s.out"]

puts stdout"Parsingaero2s.outandbdap.out"

# Tocleanup the currentdirectory andfree uppreciousspace
# I amremovingmostof the temporaryfiles. Onlythe files
# neededfor outputdataextractionwill remain.If youwant
# to keepthesefiles thenjust commentthe lines with a '#'

eval execrm [glob*.info]
eval execrm[glob fort.*]
eval execrm[glob *.info2]

# Aero2sparserversion2.0

# Thisparserrequiresmodificationsto the Aero2ssourcecodewhichprecede
# eachoutputline to beparsedwith the characters:"a?". Thesemodificationswere
# madebyMichelleKirby. Pleasecontactherat gt0038c@cad.gatech.edufor
# the details.

set file [open"aero2s.out"r]
set EOFREAD



set i 1

#Spanthe file until the sectionof interest is reached
set wordgarbage
while {Sword!= "a?"} {

set next line [gets Sfile]
scanSnext_line"%s%f%f%f%f%f%f%f%f%f%f%f%f%f%f"\

wordalpha($i)dummydummydummydummydummydummydummy\
dummydummycm($i)cl($i) cd($i) dummy

)

# Parsethe desireddata into anarray
while {Sword=="a?"} {

incr i 1
set next line [gets Sfile]

$nextline "%s%f%f%f%f%f %f%f%f%f%f%f%f%f%f"\scan
wordalpha($i)dummydummydummydummydummydummydummy\
dummydummycm($i)cl(Si) cd($i) dummy

)

set lowspeed[open"low" "w"]

Gointo procedureparse_aero2sanddeterminehowmanyvaluesare in the arrays
cl, cd, cm,andss andget out the valuesandplacetheminto an
associated"line" andthenwrite that line to the appropriateoutputfil

foreachj [isort -increasing-integer [arraynamescl]] {

appendlinel "$ci($j) "

)

foreachj [isort -increasing-integer [arraynamescd]] {

appendline2 "$cd($j) "

)

# Parsethe bdapoutputfile to get the skin friction drag

set bdap[open"bdap.out....r"]
set wordlgarbage

while {$wordl!= "0TOTAL"}{

set next line [getsSbdap]
lassign$next_linewordldummydummycdfsub

}

puts stdout"$cdfsub"

foreachj [isort -increasing-integer [arraynamescd]]

set cd($j) [ expr $cdfsub + $cd($j) ]

append line3 "$cd($j) "

)

puts $1owspeed "$1inel"

puts $1owspeed "$1ine3"

close Sfile

close Sbdap



close $1owspeed

exec mv low low$case

puts stdout "Execution

exit

complete .... !!!"

CONVERT.f

"Convert" is a FORTRAN code utilized to convert the

definition into information compatible with AERO2S and BDAP.

written are used by "RUN" to create those input files.

hermite geometry

The output files

PROGRAM CONVERT

C23456789012345678901234567890123456789012345678901234567890123456789012

REAL WXLE(20), WYLE(20), WZLE(20), WXTE(20), WYTE(20), WZTE(20)

REAL VXLE(20), VYLE(20), VZLE(20), VXTE(20), VYTE(20), VZTE(20)

REAL HXLE(20), HYLE(20), HZLE(20), HXTE(20), HYTE(20), HZTE(20)

DOUBLE PRECISION WXUP(20,10), WYUP(20,10), WZUP(20,10)

DOUBLE PRECISION WXLO(20,10), WYLO(20,10), WZLO(20,10)

REAL VXUP(20,10), VYUP(20,10), VZUP(20,10),VTCH(12),VTHICK(12)

REAL VXLO(20,10), VYLO(20,10), VZLO(20,10)

REAL HXUP(20,10), HYUP(20,10), HZUP(20,10),HTCH(12),HTHICK(12)

REAL HXLO(20,10), HYLO(20,10), HZLO(20,10)

REAL FX(25,18), FY(25,18), FZ(25,18)

DOUBLE PRECISION QI, Q2, Q3, Q4, Q5, Q6

DOUBLE PRECISION UCFA3(20), UCFA2(20), UCFAI(20), UCFA0(20)

DOUBLE PRECISION LCFA3(20), LCFA2(20), LCFAI(20), LCFA0(20)

REAL UQFIA2(20), UQFIAI(20), UQFIA0(20)

REAL LQFIA2(20), LQFIAI(20), LQFIA0(20)

REAL UQF2A2(20), UQF2AI(20), UQF2A0(20)

REAL LQF2A2(20), LQF2AI(20), LQF2A0(20)

DOUBLE PRECISION ZORD(20,12), THICK(20,12)

REAL X(46),Y(46),Z(46)

REAL VX(46),VY(46),VZ(46)

REAL HX(46),HY(46),HZ(46),CHORD(20)

REAL DY, WLESW,WTESW,t,MACH,ALT,MAC,RENUM, SOLN

DOUBLE pRECISION TEMP,A,B, XCHORD(20,12)

REAL ENGX(16,21),ENGY(16,21),ENGZ(16,21), RADII(15)

REAL TBLEY(3), TBLEX(3), TBYC(20),TZORDC(20,12)

REAL TBTEY(3), TBTEX(3),TEMP2,YI,Y2

INTEGER I,J,K, UPPER, LOWER

OPEN(UNIT=II,FILE='fuse.info',STATUS='UNKNOWN ' )

OPEN(UNIT=I2,FILE='wing.info',STATUS='UNKNOWN ' )

OPEN(UNIT=I3,FILE='v tail.info',STATUS='UNKNOWN ')

OPEN(UNIT=I4,FILE='h tail.info',STATUS='UNKNOWN ')

OPEN(UNIT=I5,FILE='engine.info',STATUS='UNKNOWN ' )

OPEN(UNIT=I6,FILE='mission.info',STATUS='UNKNOWN')

OPEN(UNIT=20,FILE='aero.info',STATUS='UNKNOWN ' )



OPEN(UNIT=25,FILE='bdap.info',STATUS='UNKNOWN')
OPEN(UNIT=26,FILE='aero.info2',STATUS='UNKNOWN')

CFUSELAGE

C FX
C FY
C FZ

= Arrayof fuselagex-location
= Arrayof fuselagey-location
= Arrayof fuselagez-location

k

WXLE(I) = Array of wing LE x-location

WYLE(I) = Array of wing LE y-location

WZLE(I) = Array of wing LE z-location

Note: The airfoil definition is for I for inboard to outboard, and

J from LE to TE

WXUP(I,J) = Array of wing upper airfoil definition x-location

WYUP(I,J) = Array of wing upper airfoil definition y-location

WZUP(I,J) = Array of wing upper airfoil definition z-location

WXLO(I,J) = Array of wing lower airfoil definition x-location

WYLO(I,J) = Array of wing lower airfoil definition y-location

WZLO(I,J) = Array of wing lower airfoil definition z-location

ZORD(I,J) = Array of z-ordinates WRT WZLE(I) to define the wing

camber

CHORD(I) = Array of wing chord lengths from inboard to outboard

Note: The following variables were used to define the airfoil

camber based on fitting three curves to the wing

airfoil surface. The first was a cubic for the LE of

the airfoil, and two successive quadratic curves to

define the remainder of the airfoil.

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

CUBIC follows the following form

Z = A0 + AI*X + A2*X**2 + A3*X**3

Q1 to Q6

UCFA0 (I, J)

UCFAI (I, J)

UCFA2 (I, J)

UCFA3 (I, J)

LCFA0 (I,J)

LCFAI (I,J)

LCFA2 (I, J)

LCFA3 (I, J)

= Temporary variables to reduce the length of the

actual coefficient equations

= Array of constant coefficients for upper surface

= Array of linear coefficients for upper surface

= Array of quadratic coefficients for upper surface

= Array of cubic coefficients for upper surface

= Array of constant coefficients for lower surface

= Array of linear coefficients for lower surface

= Array of quadratic coefficients for lower surface

= Array of cubic coefficients for lower surface

QUADRATIC follows the following form

Z = A0 + AI*X + A2*X**2

UQFIA0

UQFIAI

UQFIA2

LQFIA0

LQFIAI

LQFIA2

(I,J) = Array of constant coef for middle upper surface

(I,J) = Array of linear coef for middle upper surface

(I,J) = Array of quadratic coef for middle upper surface

(I,J) = Array of constant coef for middle lower surface

(I,J) = Array of linear coef for middle lower surface

(I,J) = Array of quadratic coef for middle lower surface

UQF2A0

UQF2AI

UQF2A2

(I,J) = Array of

(I,J) = Array of

(I,J) = Array of

constant coef for aft upper Surface

linear coef for aft upper surface

quadratic coef for aft upper surface



C LQF2A0(I,J)
C LQF2AI(I,J)
C LQF2A2(I, J)

= Array of constant coef for aft lower surface

= Array of linear coef for aft lower surface

= Array of quadratic coef for aft lower surface

C THICK(I,J) = Array of wing airfoil half thickness expressed

C in % chord

C XCHORD(I,J) = Array of % chord to defin ZORD and THICK

C A = Temporary variable for finding ZORD and THICK

C B = Temporary variable for finding ZORD and THICK

************************************************************************

C Variable Definition

C VERTICAL TAIL

C

C VX(I) = Temporary array for reading x from file v_tail.info

C VY(I) = Temporary array for reading y from file v_tail.info

C VZ(I) = Temporary array for reading z from file v_tail.info

VXLE(I) = Array of vertical tail LE x-location

VYLE(I) = Array of vertical tail LE y-location

VZLE(I) = Array of vertical tail LE z-location

Note: The airfoil definition is for I for inboard to outboard, and

J from LE to TE

VXUP (I, J)

VYUP (I, J)

VZUP (I, J)

VXLO(I,J)

VYLO(I,J)

VZLO(I,J)

VTCH(I)

VTHICK(I)

= Array of RHS VT airfoil definition x-location

= Array of RHS VT airfoil definition y-location

= Array of RHS VT airfoil definition z-location

= Array of LHS VT airfoil definition x-location

= Array of LHS VT airfoil definition y-location

= Array of LHS VT airfoil definition z-location

= Array of VT chord lengths for inboard to outboard

= Array of VT airfoil half thickness expressed

in % chord

C Variable Definition

C HORIZONTAL TAIL

C

C HX(1)

C HY(I)

C HZ(I)

C HXLE (I )

C HYLE (I)

C HZLE (I)

C

C

C HXUP (I, J)

C HYUP (I, J)

C HZUP (I, J)

C HXLO (I, J)

C HYLO(I, J)

C HZLO(I, J)

C HTCH (I )

C HTHICK (I)

C

= Temporary array for reading x from file h tail.info

= Temporary array for reading y from file h_tail.info

= Temporary array for reading z from file h_tail.info

= Array of horizontal tail LE x-location

= Array of horizontal tail LE y-location

= Array of horizontal tail LE z-location

Note: The airfoil definition is for I for inboard to outboard, and

J from LE to TE

= Array of upper HT airfoil definition x-location

= Array of upper HT airfoil definition y-location

= Array of upper HT airfoil definition z-location

= Array of lower HT airfoil definition x-location

= Array of lower HT airfoil definition y-location

= Array of lower HT airfoil definition z-location

= Array of HT chord lengths for inboard to outboard

= Array of HT airfoil half thickness expressed

in % chord

C

C

C

C

C

C

C

Variable Definition

ENGINE

ENGX ( I, J)

ENGY(I, J)

ENGZ (I, J)

RADII (I)

= Array of engine x-locations

= Array of engine y-locations

= Array of engine z-locations

= Array of engine radius definitions



C
C
C

MACH
ALT
RENUM

= Flight conditionMachnumber
= Flight condition altitude

= Reynold's number at MACH and ALT

REWIND 20

************************************************************************

C Read the flight conditions from the file mission and use to calculate

C the Reynolds number. The atmospheric stuff is based on a

C subroutine extracted from FLOPS by Peter Rhol and adjusted

C for use here

READ(16,*) MACH,ALT,MAC

CALL REYNOLDS(ALT,MACH,MAC, SOLN)

RENUM = SOLN

************************************************************************

C Read fuselage x,y,z points from the file wing.info which was created

C from the shell script "run" and store info into arrays which

C are to be manipulated later for input to BDAP and AER02S

DO 35 I = i, 25

DO 30 J = I, 18

IF(J.EQ.18) THEN

READ(II,*)

FX(I,J) = 0.0

FY(I,J) = 0.0

FZ(I,J) = 0.0

GOTO 35

ENDIF

IF(I.EQ.2.OR.I.EQ.12.0R.I.EQ.15.OR.I.EQ.18.OR.I.EQ.20) THEN

READ(II,*)

FX(I,J) = 0.0

FY(I,J) = 0.0

FZ(I,J) = 0.0

ELSE

READ(II,*) FX(I,J), FY(I,J), FZ(I,J)

ENDIF

30 CONTINUE

35 CONTINUE

C I am restructuring the definition of the x,y,z arrays for the

C fuselage. The original hermite file had approximately

C twenty five cross sections defining the fuselage dimensions.

C Based on an evaluation of those points, I selectively picked

C out 20 and had to then extract them from the original arrays.

C That is what the following do loops accomplish.

K = 0

DO 45 I = I, 25

K = K+I

DO 40 J = I, 18

IF(J.EQ.18) GOTO 45

IF(I.EQ.2.OR.I.EQ.12.OR.I.EQ.15.OR.I.EQ.18.OR.I.EQ.20) GOTO45

IF(I.GT.2.AND.I.LT.12) THEN

FX(K-I,J) = FX(I,J)

FY(E-I,J) = FY(I,J)

FZ(K-I,J) = FZ(I,J)

ELSEIF(I.GT.12.AND.I.LT.15) THEN

FX(K-2,J) = FX(I,J)

FY(K-2,J) = FY(I,J)

FZ(K-2,J) = FZ(I,J)

ELSEIF(I.GT.15.AND.I.LT.18) THEN

FX(K-3,J) = FX(I,J)

FY(K-3,J) = FY(I,J)



FZ(K-3,J)= FZ(I,J)
ELSEIF(I. GT.18.AND.I. LT.20)THEN

FX(K-4,J)= FX(I,J)
FY(K-4,J)= FY(I,J)

FZ(K-4,J) = FZ(I,J)

ELSEIF (I. GT. 20 .AND. I. LE. 25) THEN

FX(K-5,J) = FX(I,J)

FY(K-5,J) = FY(I,J)

FZ(K-5,J) = FZ(I,J)

ENDI F

40 CONTINUE

45 CONTINUE

************************************************************************

C Read wing x,y,z points from the file wing.info which was created from

C the shell script "run" and store info into arrays which are

C to be manipulated later for input to BDAP and AERO2S

K = 0

L = 0

DO 50 I = I, 46

READ(12,*) X(I),Y(I),Z(I)

50 CONTINUE

C Note: I am hard coding here because I could not get the correct

C logic to reformat the input to something easy to work with

WXLE(1) = X(12)

WYLE(1) = Y(12)

WZLE(1) = Z(12)

WXTE(1) = X(1)

WYTE(1) = Y(1)

WZTE(1) = Z(1)

WXLE(20) = X(35)

WYLE(20) = Y(35)

WZLE(20) = Z(35)

WXTE(20) = X(24)

WYTE(20) = Y(24)

WZTE(20) = Z(24)

K =i

DO 60 I = 11,2,-1

WXUP(I,K) = X(I)

WYUP(I,K) = Y(I)

WZUP(I,K) = Z(I)

K=K+I

60 CONTINUE

K = 0

DO 65 I = 13,22

K = K+I

WXLO(I,K) = X(I)

WYLO(I,K) = Y(I)

WZLO(I,K) = Z(I)

65 CONTINUE

K= 0

DO 70 I = 34, 25, -I

K = K+I

WXUP(20,K) = X(I)

WYUP(20,K) = Y(I)

WZUP(20,K) = Z(I)

70 CONTINUE

K = 0

DO 75 I = 36,45

K = K+I



WXLO(20,K)= X(I)
WYLO(20,K)= Y(I)
WZLO(20,K)= Z(I)

75CONTINUE

C NOTE:All winginfo aboveis correctandvalidated!!!!

************************************************************************

C Read vertical tail x,y,z points from the file wing.info which was

C created from the shell script "run" and store info into arrays

C which are to be manipulated later for input to BDAP and AERO2S

DO I00 I = 1,46

READ(13,*) VX(I), VY(I), VZ(I)

100 CONTINUE

C Note: I am hard coding here because I could not get the correct

C logic to reformat the input to something easy to work with

VXLE(1) = VX(12)

VYLE(1) = VY(12)

VZLE(1) = VZ(12)

VXTE(1) = VX(1)

VYTE(1) = VY(1)

VZTE(1) = VZ(1)

VXLE(20) = VX(35)

VYLE(20) = VY(35)

VZLE(20) = VZ(35)

VXTE(20) = VX(24)

VYTE(20) = VY(24)

VZTE(20) = VZ(24)

K = 0

DO 105 I = 13,22

K=K+I

VXUP(I,K) = VX

VYUP(I,K) = VY

VZUP(I,K) = VZ

105 CONTINUE

(I)

(I)

(I)

K = 0

DO ii0 I = 11,2,-1

K = K+I

VXLO(I,K) = VX(I)

VYLO(I,K) = VY(I)

VZLO(I,K) = VZ(I)

ii0 CONTINUE

K = 0

DO 115 I = 36, 45

K = K+I

VXUP(20,K) = VX(I)

VYUP(20,K) = VY(I)

VZUP(20,K) = VZ(I)

115 CONTINUE

K = 0

DO 120 I = 34,25,-I

K = K+I

VXLO(20,K) = VX(I)

VYLO(20,K) = VY(I)

VZLO(20,K) = VZ(I)

120 CONTINUE

C Note: The above info is correct and validated



DO125I=I,12
IF(I.EQ.I.OR.I.EQ.12)THEN

IF(I.EQ.12)THEN
VTCH(I)= I00.0
VTHICK(I)= 0.0

ELSE
VTCH(I)= 0.0
VTHICK(I)= 0.0

ENDIF
ELSE

VTCH(I)= (VXUP(I,I-I)-VXLE(1))/(VXTE(1)-VXLE(1))*I00.0
VTHICK(I)= (VYUP(I,I-I)-VYLO(I,I-I)/(VXTE(1)-VXLE(1))

ENDIF

125 CONTINUE

DO 130 I = 1,12

IF(I.EQ.2) THEN

VTCH(I) = 0.0

VTHICK(I) = 0.0

ENDIF

130 CONTINUE

DO 135 I = 4, 12

VTCH(I-2) = VTCH(I)

VTHICK(I-2) = VTHICK(I)

135 CONTINUE

************************************************************************

C Read horizontal tail X,y,z points from the file wing.info which was

C created from the shell script "run" and store info into arrays

C which are to be manipulated later for input to BDAP and AERO2S

DO 200 I = 1,46

READ(14,*) HX(I), HY(I), HZ(I)

200 CONTINUE

C Note: I am hard coding here because I could not get the correct

C logic to reformat the input to something easy to work with

HXLE(1) = HX 12)

HYLE(1) = HY 12)

HZLE(1) = HZ 12)

HXTE(1) = HX I)

HYTE(1) = HY I)

HZTE(1) = H Z i)

HXLE(20) = HX(35)

HYLE(20) = HY(35)

HZLE(20) = HZ(35)

HXTE(20) = HX(24)

HYTE(20) = HY(24)

HZTE(20) = HZ(24)

K = 0

DO 205 I = 11,2,-1

K= K+I

HXUP(I,K) = HX(I)

HYUP(I,K) = HY(I)

HZUP(I,K) = HZ(I)

205 CONTINUE

K = 0

DO 210 I = 13,22

K = K+I

HXLO(I,K) = HX(I)

HYLO(I,K) = HY(I)



HZLO(I,K)= HZ(I)
210CONTINUE

K =0

DO 215 I = 34, 25, -i

K = K+I

HXUP(20,K) = HX(I)

HYUP(20,K) = HY(I)

HZUP(20,K) = HZ(I)

215 CONTINUE

K = 0

DO 220 I = 36,45

K = K+I

HXLO(20,K) = HX(I)

HYLO(20,K) = HY(I)

HZLO(20,K) = HZ(I)

220 CONTINUE

DO 225 I=I,12

IF(I.EQ.I.OR.I.EQ.12) THEN

IF(I.EQ.12) THEN

HTCH(I) = 100.0

HTHICK(I) = 0.0

ELSE

HTCH(I) = 0.0

HTHICK(I) = 0.0

ENDIF

ELSE

HTCH(I) = (HXUP(I,I-I)-HXLE(1))/(HXTE(1)-HXLE(1))*I00.0

HTHICK(I) = (HZUP(I,I-I)-HZLO(I,I-I))/(HXTE(1)-HXLE(1))

ENDIF

225 CONTINUE

DO 230 I = 1,12

IF(I.EQ.2) THEN

HTCH(I) = 0.0

HTHICK(I) = 0.0

ENDIF

230 CONTINUE

DO 235 I = 4, 12

HTCH(I-2) = HTCH(I)

HTHICE(I-2) = HTHICE(I)

235 CONTINUE

************************************************************************

C I am reformatting the information obtained above on the same order

C as is required by BDAP directly

C Format wing info into 20 segments, i.e. x,y, and z and determine

C the associated chord lengths

WLESW = ATAN((WYLE(20)-WYLE(1))/(WXLE(20)-WXLE(1)))

WTESW = ATAN((WYTE(20)-WYTE(1))/(WXTE(20)-WXTE(1)))

DY = (WYLE(20)-WYLE(1))/19

C Divide the wing into 20 equally spaced sections

DO 300 I = 1,18

WYLE(I+I) = (I)*DY

WYTE(I+I) = WYLE(I+I)

WXLE(I+I) = WXLE(1)+WYLE(I+I)/(TAN(WLESW))



WXTE(I+I)= WXTE(1)+WYLE(I+I)/(TAN(WTESW))

WZLE(I+I) = WZLE(1)

WZTE(I+I) = WZTE(1)

K=I+I

300 CONTINUE

C Determine the x,y,z locations of the 20 sections and the i0

C points defining each section

DO 310 I = i,i0

DO 305 J = 2,19

WYUP(J,I) = WYLE(J)

WYLO(J,I) = WYLE(J)

t =-(WYLE(J-I)-WYLE(1))/WYLE(20)+(WYLE(J)-WYLE(1))/WYLE(20)

WXUP(J,I) = WXUP(J-I,I)+(WXUP(20,I)-WXUP(I,I))*t

WZUP(J,I) = WZUP(J-I,I)+(WZUP(20,I)-WZUP(I,I))*t

WXLO(J,I) = WXLO(J-I,I)+(WXLO(20,I)-WXLO(I,I))*t

WZLO(J,I) = WZLO(J-I,I)+(WZLO(20,I)-WZLO(I,I))*t

305 CONTINUE

310 CONTINUE

C Determine the chord lengths at the 20 sections

DO 315 I = I_ 20

CHORD(I) = WXTE(I) - WXLE(I)

315 CONTINUE

C Format the information for the x,y,z, and chord lengths of the wing

C This is the first major input to BDAP after the control

C switches. It is correct and validated for format and content

C Format the array of cambered z-values as references to the

C z-coordinate of the airfoil LE, ordered LE to TE

C This is the next major input to BDAP after the info above.

C It is correct and validated for format and content

DO 340 I = 1,20

DO 335 J = I, i0

ZORD(I,J) = WZUP(I,J) - WZLE(I)

335 CONTINUE

340 CONTINUE

The following is a redefinition of the airfoils. I am going to fit

a 4-point cubic to the first 4 points on the airfoils (i.e.,

WXUP(I,I to 4)) and two 3-point quadratics to WXUP(I,5 to 7)

and WXUP(I,8 to i0). From that I will determine the half

thickness at the following %chord locations

0.0 LE

0.5 4-point cubic

0.75 4-point cubic

2.5 4-point cubic

7.5 4-point cubic

20.0 First 3-point quadratic

30.0 First 3-point quadratic

50.0 First 3-point quadratic

70.0 Second 3-point quadratic



C 85.0 Second3-pointquadratic
C 95.0 Second3-pointquadratic
C 100.0 TE

C Note:Thesecurvefit coefficients werecheckedandvalidatedfor
C the root chord

C DoUPPERcubicfit

DO400I = i, 20

Q1 = (WXUP(I,3)**3.)*(WXUP(I,2)-WXUP(I,I))

Q1 = Q1 -(WXUP(I,2)**3.)*(WXUP(I,3)-WXUP(I,I))

Q1 = QI+(WXUP(I,I)**3.)*(WXUP(I,3)-WXUP(I,2))

Q2 = (wxuP(I,4)**3.)*(WXUP(I,2)-wxuP(I,l))

Q2 = Q2 - (wxuP(I,2)**3.)*(WXUP(I,4)-WXUP(I,I))

Q2 = Q2 + (wxuP(I,I)**3.)*(WXUP(I,4)-WXUP(I,2))

Q3 = WXUP(I,3)-WXUP(I,2)

Q3 = Q3*(WXUP(I,2)-WXUP(I,I))

Q3 = Q3*(WXUP(I,3)-WXUP(I,I))

Q4 = WXUP(I,4)-WXUP(I,2)

Q4 = Q4*(WXUP(I,2)-WXUP(I,I))

Q4 = Q4*(WXUP(I,4)-WXUP(I,I))

Q5 = WZUP(I,3)*(WXUP(I,2)-WXUP(I,I))

Q5 = Q5-WZUP(I,2)*(WXUP(I,3)-WXUP(I,I))

Q5 = Q5+WZUP(I,I)*(WXUP(I,3)-WXUP(I,2))

Q6 = wzuP(I,4)*(wxuP(I,2)-wxuP(I,l))

Q6 = Q6-WZUP(I,2)*(WXUP(I,4)-WXUP(I,I))

Q6 = Q6+WZUP(I,I)*(WXUP(I,4)-WXUP(I,2))

UCFA3(I) = (Q3*Q6-Q4*Q5)/(Q2*Q3-QI*Q4)

UCFA2(I) = (Q5-UCFA3(I)*QI)/Q3

UCFAI(I) = (WZUP(I,2)-WZUP(I,I))/(WXUP(I,2)-WXUP(I,I))

TEMP = UCFA3(I)*(WXUP(I,2)**3.-WXUP(I,I)**3.)

UCFAI(I) = UCFAI(I) -TEMP/(WXUP(I,2)-WXUP(I,I))

UCFAI(I) = UCFAI(I)-UCFA2(I)*(WXUP(I,I)+WXUP(I,2))

UCFA0(I) = WZUP(I,I)-UCFAI(I)*WXUP(I,I)

UCFA0(I) = UCFA0(I)-UCFA2(I)*WXUP(I,I)**2.

UCFA0(I) = UCFAO(I)-UCFA3(I)*WXUP(I,I)**3.

400 CONTINUE

C Do LOWER cubic fit

DO 401 I = 1,20

Q1 = (WXLO(I,3)**3.)*(WXLO(I,2)-WXLO(I,I))

Q1 = Q1 -(WXLO(I,2)**3.)*(WXLO(I,3)-WXLO(I,I))

Q1 = QI+(WXLO(I,I)**3.)*(WXLO(I,3)-WXLO(I,2))

Q2 = (WXLO(I,4)**3.)*(WXLO(I,2)-WXLO(I,I))

Q2 = Q2 - (WXLO(I,2)**3.)*(WXLO(I,4)-WXLO(I,I))

Q2 = Q2 + (WXLO(I,I)**3.)*(WXLO(I,4)-WXLO(I,2))

Q3 = WXLO(I,3)-WXLO(I,2)

Q3 = Q3*(WXLO(I,2)-WXLO(I,I))

Q3 = Q3*(WXLO(I,3)-WXLO(I,I))

Q4 = WXLO(I,4)-WXLO(I,2)

Q4 = Q4*(WXLO(I,2)-WXLO(I,I))



Q4= Q4*(WXLO(I,4)-WXLO(I,I))

Q5=
Q5=
Q5=

WZLO(I,3)*(WXLO(I,2)-WXLO(I,I)
Q5-WZLO(I,2)*(WXLO(I,3)-WXLO(I,I))
Q5+WZLO(I,I)*(WXLO(I,3)-WXLO(I,2))

Q6=
Q6=
Q6=

WZLO(I,4)*(WXLO(I,2)-WXLO(I,I))
Q6-WZLO(I,2)*(WXLO(I,4)-WXLO(I,I))
Q6+WZLO(I,I)*(WXLO(I,4)-WXLO(I,2))

LCFA3(I)= (Q3*Q6-Q4*Q5)/(Q2*Q3-QI*Q4)
LCFA2(I)= (Q5-LCFA3(I)*QI)/Q3
LCFAI(I)= (WZLO(I,2)-WZLO(I,I))/(WXLO(I,2)-WXLO(I,I)
TEMP= LCFA3(I)*(WXLO(I,2)**3.-WXLO(I,I)**3.)
LCFAI(I)= LCFAI(I)-TEMP/(WXLO(I,2)-WXLO(I,I))
LCFAI(I)= LCFAI(I)-LCFA2(I)*(WXLO(I,I)+WXLO(I,2))

LCFA0(I)
LCFA0(I)
LCFA0(I)

= WZLO(I,I)-LCFAI(I)*WXLO(I,I)
= LCFA0(I)-LCFA2(I)*WXLO(I,I**2.

= LCFA0(I)-LCFA3(I)*WXLO(I,I **3.

401 CONTINUE

C Do first UPPER quadratic curve fit

DO 402 I = i, 20

UQFIA2(I)

UQFIAI(I)

UQFIA0(I)

=((WZUP(I,7)-WZUP(I,5))/(WXUP(I,7)-WXUP(I,5))-

(WZUP (I, 6)-WZUP (I, 5) )/(WXUP(I, 6)-WXUP (I, 5)))/

(WXUP (I, 7) -WXUP (I, 6) )

= (WZUP (I, 6)-WZUP (I, 5))/(WXUP (I, 6)-WXUP (I, 5))-

UQFIA2(I)*(WXUP(I,5)+WXUP(I,6))

=WZUP(I,5)-UQFIAI(I)*WXUP(I,5)-UQFIA2(I)*WXUP(I,5)**2

C Do first LOWER quadratic curve fit

LQFIA2(I) =((WZLO(I,7)-WZLO(I,5))/(WXLO(I,7)-WXLO(I,5))-

+ (WZLO(I,6)-WZLO(I,5))/(WXLO(I,6)-WXLO(I,5)))/

+ (WXLO(I,7)-WXLO(I,6))

LQFIAI(I) =(WZLO(I,6)-WZLO(I,5))/(WXLO(I,6)-WXLO(I,5))-

+ LQFIA2(I)*(WXLO(I,5)+WXLO(I,6))

LQFIA0(I)=WZLO(I,5)-LQFIAI(I)*WXLO(I,5)-LQFIA2(I)*WXLO(I,5)**2.

C Do second UPPER quadratic curve fit

DO 403 I = 1,20

UQF2A2(I) =((WZUP(I,10)-WZUP(I,8))/(WXUP(I,10_-WXUP(I,8))-

+ (WZUP(I,9)-WZUP(I,8))/(WXUP(I,9)-WXUP(I,8)))/

+ (WXUP(I,10)-WXUP(I,9))

UQF2AI(I) =(WZUP(I,9)-WZUP(I,8))/(WXUP(I,9)-WXUP(I,8))-

+ UQF2A2(I)*(WXUP(I,8)+WXUP(I,9))

UQF2A0(I)=WZUP(I,8)-UQF2AI(I)*WXUP(I,8)-UQF2A2(I)*WXUP(I,8)**2.

Do second LOWER quadratic curve fit

LQF2A2(I) =((WZLO(I,10)-WZLO(I,8))/(WXLO(I,10)-WXLO(I,8))-

+ (WZLO(I,9)-WZLO(I,8))/(WXLO(I,9)-WXLO(I,8)))/

+ (WXLO(I,10)-WXLO(I,9))

LQF2AI(I) =(WZLO(I,9)-WZLO(I,8))/(WXLO(I,9)-WXLO(I,8))-

+ LQF2A2(I)*(WXLO(I,8)+WXLO(I,9))

LQF2A0(I)=WZLO(I,8)-LQF2AI(I)*WXLO(I,8)-LQF2A2(I)*WXLO(I,8)**2.

403 CONTINUE



L

C***********************************************************************

C Now that I have the coefficients, I need to establish the points

C which will define the Z coordinates and half thicknesses

C based on the above curve fit equations

C First define the X-locations for the % chords stated above

C These have been checked and validated

DO 410 I = I,

XCHORD (I, 1 )

XCHORD (I, 2 )

XCHORD (I, 3 )

XCHORD(I,4)

XCHORD(I,5)

XCHORD(I,6)

XCHORD(I,7)

XCHORD(I,8)

20

= 0.0 * CHORD(I)/100. + WXLE(I)

= 0.5 * CHORD(I)/100. + WXLE(I)

= 0.75 * CHORD(I)/100. + WXLE(I)

= 2.5 * CHORD(I)/100. + WXLE(I)

= 7.5 * CHORD(I)/100. + WXLE(I)

= 20.0 * CHORD(I)/100. + WXLE(I)

= 30.0 * CHORD(I)/100. + WXLE(I)

= 50.0 * CHORD(I)/100. + WXLE(I)

XCHORD(I,9) = 70.0 * CHORD(I)/100. + WXLE(I)

XCHORD(I,10) = 85.0 * CHORD(I)/100. + WXLE(I)

XCHORD(I,II) = 95.0 * CHORD(I)/100. + WXLE(I)

XCHORD(I,12) = 100.0 * CHORD(I)/100. + WXLE(I)

410 CONTINUE

************************************************************************

C Now find the corresponding Z-coordinate based on the above

C X-locations and the corresponding curve fit equations

DO 420 I = 1,20

DO 415 J = 1,12

IF(J.EQ.I) THEN

ZORD(I,J) = 0.0

THICK(I,J) = 0.0

ELSEIF(J.EQ.12) THEN

ZORD(I,J) = 0.0

THICK(I,J) = 0.0

ELSEIF(J.GT.I.AND.J.LT.6) THEN

A = UCFA0(I)+UCFAI(I)*XCHORD(I,J)+UCFA2(I)*XCHORD(I,J)**2.

A = A+UCFA3(I)*XCHORD(I,J)**3.

B = LCFA0(I)+LCFAI(I)*XCHORD(I,J)+LCFA2(I)*XCHORD(I,J)**2.

B = B +LCFA3(I)*XCHORD(I,J)**3.

ZORD(I,J) = A - WZLE(I)

THICK(I,J) = (A-B)/CHORD(I)

ELSEIF(J.GT.5.AND.J.LT.9) THEN

A = UQFIA0(I)+UQFIAI(I)*XCHORD(I,J)+UQFIA2(I)*

+ XCHORD(I,J)**2.

B = LQFIA0(I)+LQFIAI(I)*XCHORD(I,J)+LQFIA2(I)*

+ XCHORD(I,J)**2.

ZORD(I,J) = A - WZLE(I)

THICK(I,J) = (A-B)/CHORD(I)

ELSEIF(J.GT.8.AND.J.LT.12) THEN

A = UQF2A0(I)+UQF2AI(I)*XCHORD(I,J)+UQF2A2(I)*

+ XCHORD(I,J)**2.

B = LQF2A0(I)+LQF2AI(I)*XCHORD(I,J)+LQF2A2(I)*

+ XCHORD(I,J)**2.

ZORD(I,J) = A - WZLE(I)

THICK(I,J) = (A-B)/CHORD(I)

ENDIF

415 CONTINUE

420 CONTINUE



C***********************************************************************

C The next step is to redefine the engines. Thank God this looks like

C it is going to be easy. First off, I need to read in the

C geometry from the file engine.info created by the shell script.

C I then need to sort out the actual location that I want and

C reformat them to BDAP style.

DO 505 I = i, 16

DO 500 J = 1,21

READ(15,*) ENGX(I,J),ENGY(I,J),ENGZ(I,J)

500 CONTINUE

505 CONTINUE

DO 515 I = i, 16

DO 510 J = 1,10

ENGX(I,J) = 0.0

ENGY(I,J) = 0.0

ENGZ(I,J) = 0.0

510 CONTINUE

515 CONTINUE

DO 525 I = I, 16

DO 520 J = 11,21

IF(I.EQ.10) THEN

ENGX(I,J-10) = 0.0

ENGY(I,J-10) = 0.0

ENGZ(I,J-10) = 0.0

ELSE

ENGX(I,J-10) = ENGX(I,J)

ENGY(I,J-10) = ENGY(I,J)

ENGZ(I,J-10) = ENGZ(I,J)

ENDIF

520 CONTINUE

525 CONTINUE

DO 526 I= 11,16

DO 527 J = i,II

ENGX(I-1,J) = ENGX(I,J)

ENGY(I-I,J) = ENGY(I,J)

ENGZ(I-I,J) = ENGZ(I,J)

527 CONTINUE

526 CONTINUE

DO 530 I = 1,15

RADII(I) = 0.5*(ENGZ(I,II)-ENGZ(I,I))

530 CONTINUE

C Test the bunching of output write statements for the

C BDAP input file. Write it to bdap.info which will

C be read by the shell script

DO 535 I = 1,20

WRITE(25,915) WXLE(I),WYLE(I),WZLE(I),CHORD(I)

535 CONTINUE

DO 540 I = 1,20

WRITE(25,920) (ZORD(I,J),J=I,12)

540 CONTINUE

DO 545 I = 1,20

WRITE(25,925)

545 CONTINUE

(THICK(I, J) , J=l, 12)

************************************************************************

C The next thing if to format the fuselage info to the correct



format.BDAPwantsto seeanx-location first andthenthe
y andz locations for eachx-location

55O

WRITE(25,930)(FX(I,I),I=I,20)
DO550I = 1,20

WRITE(25,930)(FY(I,J), J=17,1,-l)
WRITE(25,930)(FZ(I,J), J=17,1,-l)

CONTINUE
WRITE(25,950)ENGX(I,I),ENGY(I,I),-(WZLE(5)-ENGZ(I,6))
WRITE(25,955)((ENGX(I,I)-ENGX(I,I)),I=I,15)
WRITE(25,955)(RADII(I),I=I,15)

WRITE(25,935)VXLE(1),VYLE(1),VZLE(1),VXTE(1)-VXLE(1),
+ VXLE(20),VYLE(20),VZLE(20),VXTE(20)-VXLE(20)

WRITE(25,940)
WRITE(25,945)
WRITE(25,960)

+
WRITE(25,965)
WRITE(25,970)

(VTCH(I),I=I,i0)
(100.0*0.5*VTHICK(I),I= 1,10)
HXLE(1),HYLE(1),HZLE(1),HXTE(1)-HXLE(1),
HXLE(20),HYLE(20),HZLE(20),HXTE(20)-HXLE(20)
(HTCH(I),I=I,I0)
(100.0*0.5*HTHICK(I),I= i,I0)

************************************************************************
CAERO2SAERO2SAERO2SAERO2SAERO2SAERO2SAERO2SAERO2SAERO2SAERO2SAER02S

C NowI needto takeall of the info I havefromgeneratingthe BDAP
C input file to stuff that will becompatiblewith whatAERO2S
C requires. I will directly follow the AERO2Smanualin my
C conversionof the knowngeometryto that whichis required

CThefirst thing neededis TBLEYandTBLEX.I will assumethat 20
C spanwisestation candefinethe entire geometry:2 for the
C fuselageand18 for the wing.

WRITE(20,975)

IF(WYLE(20).LE.128.25)THEN
UPPER=I9

LOWER = 4

ELSE

UPPER = 20

LOWER = 3

ENDIF

TBLEY(1) = 0.0

TBLEX(1) = 0.0

TBLEY(2) = 13.5

TBLEX(2) = WXLE(1)+(WXLE(2)-WXLE(1))*

+ ( (13.5-WYLE (I)) / (WYLE (2) -WYLE (i)) )

TBLEY(3) = WYLE(20)

TBLEX(3) = WXLE(20)

WRITE(20,980) (TBLEY(I), I=i,3)

WRITE(20,990) (TBLEX(I), I=i,3)

WRITE(20,995)

TBTEY(1) = 0.0

TBTEX(1) = FX(20,1)

TBTEY(2) = 13.5

TBTEX(2) = WXTE(1)+(WXTE(2)-WXTE(1))*

+ ((13.5-WYTE(1))/(WYTE(2)-WYTE(1)))

TBTEY(3) = WYTE(20)

TBTEX(3) = WXTE(20)



WRITE(20,1000)(TBTEY(I),I=1,3)
WRITE(20,1005)(TBTEX(I),I=1,3)

XMAX= FX(20,1)- FX(I,I)
IF(XMAX.GT.HXTE(1).AND.XMAX.GT.HXTE(20))THEN

WRITE(20,1010)XMAX
ELSEIF(HXTE(1).GT.XMAX.AND.HXTE(1).GT.HXTE(20))THEN

WRITE(20,1010)HXTE(1)
ELSEIF(HXTE(20).GT.XMAX.AND.HXTE(20).GT.HXTE(1)) THEN

WRITE(20,1010)HXTE(20)
ENDIF

IF(WYLE(20).LT.128.25)THEN
WRITE(20,1012)

ELSE
WRITE(20,1013)

ENDIF

C NowI needto definethe spanwisesections. I amassumimgthat
C 20sectionwill besufficient definition

TBYC(1)= 0.0
TBYC(2)= TBLEY(2)

DO600I = LOWER,20
TBYC(I)= WYLE(I)

600CONTINUE

WRITE(20,1015)
WRITE(20,1016)
WRITE(20,1017)

(TBYC(I),I = 1,UPPER)

TZORDC(I,I) = FZ(I,I)

TEMP2 = 0.005*(FX(20,1)-FX(I,I))

TZORDC(I,2) = FZ(I,9)+(FZ(2,9)-FZ(I,9))*

+ ( (TEMP2-FX (i, 9) ) / (FX (2, 9) -FX (i, 9) ) )

TEMP2 = 0.0075* (FX(20, I)-FX(I,I))

TZORDC(I,3) = FZ(I,9)+(FZ(2,9)-FZ(I,9))*

+ ( (TEMP2-FX (i, 9) ) / (FX (2, 9) -FX (i, 9) ) )

TEMP2 = 0.025*(FX(20,1)-FX(I,I))

TZORDC(I,4) = FZ(I,9)+(FZ(2,9)-FZ(I,9))*

+ ( (TEMP2-FX (i, 9) ) /(FX (2, 9)-FX (i, 9) ) )

TEMP2 = 0.075*(FX(20,1)-FX(I,I))

TZORDC(I,5) = FZ(7,9)+(FZ(8,9)-FZ(7,9))*

+ ( (TEMP2-FX (7, 9) ) / (FX (8, 9) -FX (7, 9) ) )

DO 605 I = 6,9

TZORDC(I,I) = FZ(10,9)

605 CONTINUE

C These numbers are to estimate the camber of the aft end

C of the fuselage

TZORDC(I,10) = 0.2

TZORDC(I,II) = 0.2

TZORDC(I,12) = 0.2

DO 610 I = 1,12

TZORDC(12,I) = 0.0

610 CONTINUE

DO 620 I = 2,20

DO 615 J = I,i0

TZORDC(I,J÷I) = 0.5*(WZUP(I,J)-WZLO(I,J))-WZLE(I)+WZLO(I,J)

615 CONTINUE

620 CONTINUE



DO625I = 1,UPPER
IF(I.EQ.I) THEN

WRITE(20,i020) (TZORDC(I,J), J=l,12)
ELSE

WRITE(20,I025) (TZORDC(I,J), J=l,12)
ENDIF

625CONTINUE

WRITE(20,1030)WYLE(1),WYLE(20)

C Note:Theabovewrite statementsareall goingto the file
C 'aero.info'. It is split herebecausethe shell script hasto
C insert someinformation.I couldhaveprobablyput this info
C all together,but it waseasier if I split it. Therefore,
C all of thewrite statementsbeloware goingto 'aero.info2'

WRITE(26,1032)MACH,RENUM
WRITE(26,1035)
WRITE(26,1040)HYLE(1),HYLE(20),HXLE(1),HXLE(20)
WRITE(26,1042)
WRITE(26,1045)HYTE(1),HYTE(20),HxTE(1),HXTE(20)
WRITE(26,1050)
WRITE(26,1055)HYLE(1),HYLE(20),HYLE(1),HYLE(20)

915FORMAT(4F7.3)
920FORMAT(10F7.3,'ZORD',/,2F7.3)
925FORMAT(10F7.3,/,2F7.3)
930FORMAT(10F7.2)
935FORMAT(8F7.3)
940FORMAT(10F7.2,'XFINI')
945FORMAT(10F7.2, ' FORD1')
950FORMAT(3F7.3)
955FORMAT(10F7.3,/,5F7.3)
960FORMAT(SF7.3)
965FORMAT(10F7.2,'XFIN2')
970FORMAT(10F7.2,'FORD2')

975FORMAT'GLOBALAEROANALYSISSTUDY',/,'$INPTI',/,'NLEY=3,')
980FORMAT' TBLEY(1)=',F8.4,',',F8.4,',',F8.4,',')
990FORMAT' TBLEX(1)=',F8.4,',',F8.4,',',F8.4,',')
995FORMAT' NTEY=3,')

I000FORMAT' TBTEY(1)=',F8.4,',',F8.4,',',F8.4,',')
1005FORMAT' TBTEX(1)=',F8.4,',',F8.4,',',FS.4,',')
1010FORMAT'XMAX=',F8.4,',',/,/,'JBYMAX=20,')
1012FORMAT' NYC=19,')
1013FORMAT' NYC=20,')
1015FORMAT' TBYC=',F7.3,', ',F7.3,', ',F7.3,',',F7.3, ', ',

+ F7.3,',',F7.3, ', ',F7.3, ', ',F7.3, ', ',/,F7.3, ', ',F7.3,', ',
+ F7.3,', ',F7.3, ', ', F7.3,', ',F7.3, ', ', F7.3,', ', F7.3,', ',/,
+ F7.3,',',F7.3,',',F7.3,',',F7.3,',')

1016FORMAT('NPCTC=I2,')
1017FORMAT('TBPCTC=0.0,0.5,0.75,2.5,7.5,20.0,30.0,50.0,70.0,',

+'85.0,95.0,100.0,')
1020FORMAT('TZORDC=',F6.3,',',F6.3,',',F6.3,',',F6.3,',',

+ F6.3,',',F6.3,',',F6.3,',',F6.3,',',F6.3,',',/,F6.3,',',
+ F6.3,',',F6.3,',I4*0.0,')

************************************************************************

C FORMAT statements for output for AERO2S input. Note: The info is

C being written to 2 different files (aero.info and aero.info2)

C so that the script can insert information between them.



/

k

1025 FORMAT (F6.3, ', ',F6.3, ', ',F6.3, ', ',F6.3, ', ',

+ F6.3, ', ',F6.3, ', ',F6.3, ', ',F6.3, ', ',F6.3, ', ',F6.3, ', ',/,

+ F6.3, ', ', F6.3, ', 14"0.0, ' )

1030 FORMAT(' NYR=2, ',/, ' TBYR=',F4.3, ',',F7.3, ', ')

1032 FORMAT(' XM = ',F4.2,',',/,' RN = ',F6.2,',')

1035 FORMAT(' IVOROP=I, ',/, ' NALPHA=I0, ',/,

+ 'TALPHA= -5.,-4.,-2.,-1.,0.,1.,2.,4.,6., ',

+ '8., ',/, ' ILS2= 2, ',/, ' NLEY2= 2, ')

1040 FORMAT(' TBLEY2=',F7.3, ', ',F7.3, ', ',/, ' TBLEX2=',F7.3, ', ',

+ F7.3, ',')

1042 FORMAT(' NTEY2= 2, ')

1045 FORMAT(' TBTEY2=',F7.3, ', ',F7.3, ', ',/, ' TBTEX2=',F7.3, ', ',

+ F7.3, ', ')

1050 FORMAT(' NYC2= 2, ')

1055 FORMAT(' TBYC2=',F4.3, ', ',F6.3,', ',/,' NPCTC2= 2, ',/,

+ ' TBPCTC2= 0.0,100.0, ',/, ' TZORDC2= 52*0.0, ',/,' NYR2= 2, ',/,

+ ' TBYR2= ''F4.3,',',F6.3,',',/,' DELTA2=2.0, ')

END

SUBROUTINE REYNOLDS(Z,M, CBAR, REN)

C **********************************************************************

C THis subroutine calculates the Reynolds number for the flight

C condition specified by the Mach number, Altitude, and reference

C length of the wing, i.e. Mean Aerodynamic Chord (MAC). These

C subroutines were extracted from FLOPS and also Peter Rohl's

C thesis work.

IMPLICIT NONE

REAL ZFT, DTC, DELTA, THETA, ASTAR, TM, RE, HFT, MACH, VEL

REAL RHO0, RHO, A0, MAC, REN, Z,M, CBAR

standard sea level values, rho in slugs/ft^3 and a in ft/s

..........................................................

DATA RHO0 /0.0023769/, A0 /1116.45/

C

C 10 CONTINUE

ZFT = Z

MACH = M

MAC = CBAR

CALL ATMO ( ZFT, DTC, DELTA, THETA, ASTAR, TM, RE, HFT )

RHO = RHO0 * DELTA / THETA

VEL = MACH * A0 * SQRT(THETA)

REN = RE * MAC * MACH / I.E+06

RETURN

END

SUBROUTINE ATMO ( ZFT, DTC, DELTA, THETA, ASTAR, TM, RE, HFT )

C 1962 STANDARD ATMOSPHERIC PROPERTIES GOOD UP TO 88743'METERS

C GEOPOTENTIAL ALTITUDE (90 KM GEOMETRIC ALTITUDE OR 291152 FEET)

C ALSO SAME AS 1976 STD ATMOSPHERE TO 51 KM (167323 FEET)

C INPUT�OUTPUT IN ENGLISH UNITS, CALCULATIONS IN SI UNITS

C BASE PRESSURES AND EXPONENTS FOR EACH LAYER ARE RECOMPUTED TO ASSURE

C CONTINUITY AT THE CORNERS REGARDLESS OF THE COMPUTER USED

C ZFT

C DTC

INPUT ALTITUDE - FEET

DELTA TEMPERATURE FROM STD - DEG C



DELTA
THETA
ASTAR
TM
RE
HFT

PRESSURERATIO
TEMPERATURERATIO
SPEEDOFSOUND- KNOTS
MOLECULAR-SCALETEMPERATURE- DEGKELVIN
REYNOLDSNUMBERPERFOOTATMACHI.
GEOPOTENTIALALTITUDE- FEET

IMPLICITREAL*8(A-H,O-Z)
REAL*4ZFT,DTC,DELTA,THETA,ASTAR,TM,RE,HFT,SFT,STC
DIMENSIONP(9), E(9)
SAVEP, E, DDLTA,DHETA,DSTAR,DTM,DRE,DFT,SFT,STC,IFIR
DATAREARTH/6367533./,GR/9.80665/,GNS/9.823693/,CMI/.9985/,

1 OC2/26.76566E-IO/,IFIR/I/,SFT,STC/2*-IO00./

C PRECALCULATEEXPONENTSANDBASEPRESSURERATIOS

IF ( IFIR .NE.1 ) GOTO5
P(1)= I.
GMOR= 9.80665* 1.225* 288.15/ 101.325

E(1) = GMOR / 6.5

P(2) = (216.65/288.15)**E(I)

E(2) = -GMOR / 216.65

P(3) = P(2) * EXP(E(2) * 9.)

E(3) = GMOR

P(4) = P(3) * (216.65/228.65)**GMOR

E(4) = GMOR / 2.8

P(5) = P(4) * (228.65/270.65)**E(4)

E(5) = -GMOR / 270.65

P(6) = P(5) * EXP(E(5) * 5.)

E(6) = GMOR / 2.

P(7) = P(6) * (252.65/270.65)**E(6)

E(7) = GMOR / 4.

P(8) = P(7) * (180.65/252.65)**E(7)

E(8) = -GMOR / 180.65

Z90 = 90000.

R = REARTH + Z90

GN = GNS * (REARTH / R)**(CMI + i.)

H90 = (R * GN * ( (R/REARTH)**CMI - i.) / CMI

1 - Z90 * (R - Z90/2.) * OC2) / GR

DH = H90/1000. - 79.

P(9) = P(8) * EXP(E(8) * DH)

E(9) = 11.056

IFIR = 0

C CONVERT INPUT FEET TO METERS

5 IF ( ZFT .EQ. SFT .AND. DTC .EQ. STC ) GO TO ii0

SFT = ZFT

STC = DTC

Z = ZFT * .3048

C CALCULATE GEOPOTENTIAL ALTITUDE

R = REARTH + Z

RPOW = (REARTH / R)**CMI

GN = GNS * (REARTH / R) * RPOW

H = (R * GN * ( I./RPOW - I.) / CMI

1 - Z * (R -Z/2.) * OC2) / GR

DFT = H / .3048

C CONVERT H TO KILOMETERS

H = H/1000.

C SEA LEVEL TO II KM

IF ( H .GT. ii. ) GO TO ii



DTM = 288.15- 6.5 * H
DDLTA= ((DTM)/288.15)**E(1)
GOTO100

Cii KMTO20KM

ii IF ( H .GT.20. ) GOTO20
DH = H- II.
DTM = 216.65
DDLTA= P(2) * EXP(E(2) * DH)

GO TO 100

C 20 KM TO 32 KM

2O IF ( H .GT. 32. ) GO TO 32

DH = H - 20.

DTM = 216.65 + DH

DDLTA = P(3) * (216.65/DTM)**E(3)

GO TO i00

C 32 KM TO 47 KM

32 IF ( H .GT. 47. ) GO TO 47

DH = H - 32.

DTM = 228.65 + 2.8 * DH

DDLTA = P(4) * (228.65/DTM)**E(4)

GO TO 100

C 47 KM TO 52 KM

47 IF ( H .GT. 52. ) GO TO 52

DH = H - 47.

DTM = 270.65

DDLTA = P(5) * EXP(E(5) * DH)

GO TO i00

C 52 KM TO 61 KM

52 IF ( H .GT. 61. ) GO TO 61

DH = H - 52.

DTM = 270.65 - 2.0 * DH

DDLTA = P(6) * (DTM/270.65)**E(6)

GO TO i00

C 61 KM TO 79 KM

61 IF ( H .GT. 79. ) GO TO 79

DH = H - 61.

DTM = 252.65 - 4.0 * DH

DDLTA = P(7) * (DTM/252.65)**E(7)

GO TO I00

C 79 KM TO 88743 METERS

79 IF ( Z .GT. 90000. ) GO TO 90

DH = H - 79.

DTM = 180.65

DDLTA = P(8) * EXP(E(8) * DH)

GO TO 100

C ABOVE 88743 M, 1962 STD ATMOSPHERE SWITCHES TO GEOMETRIC ALTITUDE

C THE EQUATIONS BELOW ARE CLOSE UP TO i00 KM AND DIVERGE AFTER THAT

90 DH = Z/1000. - 90.

DTM = 180.65 + 3.0 * DH

DDLTA = P(9) * (180.65/DTM)**E(9)



CCALCULATETEMPERATURERATIO,SPEEDOFSOUND,ANDREYNOLDSNUMBER

I00 DHETA= (DTM+ DTC)/ 288.15

DSTAR = 661.479 * DSQRT(DHETA)

DRE = 1.479301E+9 * DDLTA * (DTM + 110.4) / DTM**2

Ii0 DELTA = DDLTA

THETA = DHETA

ASTAR = DSTAR

TM = DTM

RE = DRE

HFT = DFT

RETURN

END

Temporary Files

Most of the files contained in this section are used for passing information and are

removed upon completion of the analysis. Only three files contained herein, remain after

execution. Those files are "thick", "hthick", and "mission".

aero.info

file.

This file is written by "convert" for use by "RUN" to generate the AERO2S input

GLOBAL AERO ANALYSIS STUDY

$INPTI

NLEY=3,

TBLEY(1)= .0000, 13.5000,131.5200,

TBLEX(1)= .0000, 53.6050,114.8444,

NTEY= 3,

TBTEY(1)= .0000, 13.5000,131.5200,

TBTEX(1)=I63.5000, 89.0420,124.2558,

XMAX=I78.5628,

JBYMAX= 20,

NYC= 20,

TBYC= .000, 13.500, 13.844, 20.766, 27.688, 34.611, 41.533, 48.455,

55.377, 62.299, 69.221, 76.143, 83.065, 89.987, 96.909,103.832,

110.754,117.676,124.598,131.520,

NPCTC=I2,

TBPCTC=0.0,0.5,0.75,2.5,7.5,20.0,30.0,50.0,70.0,85.0,95.0,100.0,

TZORDC= -.811, -.811, -.811, -.811, -.022, .000, .000, .000, .000,

200, .200, .200,14"0.0,

000, .001, .011, .052, .138, .257, .353, .360, .289, .166,

048, .000,14"0.0,

000, .001, .011, .050, .132, .246, .339, .345, .277, .159,

046, .000,14"0.0,

000, .001, .010, .047, .126, .235, .324, .330, .265, .152,

044, .000,14"0.0,

000, .001, .010, .045, .121, .225, .310, .315, .253, .145,



042, .000,14"0.0,
000, .001, 009, .043, .115, .214, .295, .301, .241, .139,
040 .000,14"00,
000 .001, 009, .041, .109, .204, .280, .286, .229, .132,
038 .000,14"00,
000 .001, 008, .039, .104, .193, .266, .271, .217, .125,
036 .000,14"00,
000 .001, 008, .037, .098, .182, .251, .256, .205, .118,
034 .000,14"00,
000 .000, 008, .035, .092, .172, .236, .241, .193, .Iii,

.032 .000,14"00,

.000 .000, 007, .032, .086, .161, 222, .226, .181, .104,

.030 .000,14"00,

.000 .000, .007, .030, .081, .150, 207, .211, .169, .097,

.028 .000,14"0.0

.000 .000, .006 .028, .075, .140, 193, .196, .157, .090,

.026, .000,14"0.0

.000 .000, .006 .026, .069, .129, 178, .181, 145, .084,

.024 .000,14"0.0

.000 000, .005 .024, .064, .119, 163, .166, 134, .077,

.022 000,14"0.0

.000 000, .005 .022, .058, .108, 149, .151, 122, .070,

.020 000,14"0.0

.000 000, .004 .020, .052, .097, 134, .137, Ii0, .063,

.018 000,14"0.0
.000 000, .004 .017, .047, .087, 119, .122, 098, .056,
.016, 000,14"0.0
.000, 000, .003 .015, .041, .076, .105, .107, 086, .049,
.014, 000,14"0.0
.000, 000, .003 .013, .035, .065, .090, .092, .074, .042,
.012, 000,14"0.0

NYR=2,
TBYR=.000,131.520,

aero.info2

This file is written by "convert" for use by "RUN" to create the AERO2S input

file. The information contained here is the latter half if the input file.

XM = .30,

RN= 59.65,

IVOROP=I,

NALPHA=I0,

TALPHA= -5.,-4.,-2.,-1.,0.,1.,2.,4.,6.,8.,

ILS2= 2,

NLEY2= 2,

TBLEY2= .000, 34.560,

TBLEX2=I47.000,171.474,

NTEY2= 2,

TBTEY2= .000, 34.560,

TBTEX2=I75.357,178.563,

NYC2= 2,

TBYC2=.000,34.560,

NPCTC2= 2,

TBPCTC2= 0.0,100.0 ,

TZORDC2= 52*0.0,



NYR2=2,
TBYR2=.000,34.560,
DELTA2=2.0,

bdap.info

This file is written by "convert" for use by "RUN" to create the BDAP input file.

46.600 .000

50.192 6.922

53.784 13 844

57.375 20 766

60.967 27 688

64.559 34 611

68.151 41 533

71.743 48 455

75.334 55.377

78.926 62.299

82.518 69.221

86.110 76.143

89.702 83.065

93.294 89.987

96.885 96.909

100.477103.832

104.069110.754

107.661117.676

111.253124.598

114.844131.520

.000 .451

.347 .000

.000 .433

.334 .000

.000 .415

.320 000

.000 398

.306 000

.000 380

.292 000

.000 362

.278 000

.000 .344

.265 .000

.000 .326

.251 .000

.000 .308

.237 .000

.000 .290

.223 .000

.000 .272

_209 .000

.000 .254

.196 .000

.000 .236

.182 .000

.000 .218

.168 .000

.000 .200

.154 .000

.000 .182

.140 .000

9.650 38.414

9.650 36.888

9.650 35.361

9.650 33.835

9.650 32.308

9.650 30.782

9.650 29.255

9.650 27.729

9.650 26.202

9.650 24.676

9.650 23.149

9.650 21.623

9.650 20.097

9.650 18.570

9 650 17.044

9 650 15.517

9 650 13.991

9 650 12.464

9 650 10.938

9 650 9.411

589 1.039

.565 .998

.542 .956

.518 .915

.495 .874

.472 .833

.448 .791

.425 .750

.402 .709

.378 .667

.355 .626

.331 .585

.308 .544

.285 .502

.261 .461

.238 .420

1.201 2.299 2.463 2.241 1.584 .895 ZORD

1.153 2.207 2.366 2.152 1.521 .860 ZORD

1.106 2.116 2.268 2.063 1.458 .824 ZORD

1.058 2.024 2.170 1.973 1.395 .789 ZORD

1.010 1.933 2.072 1.884 1.332 .753 ZORD

.962 1.842 1.974 1.795 1.269 .718 ZORD

.915 1.750 1.876 1.706 1.206 .682 ZORD

.867 1.659 1.778 1.617 1.143 .646 ZORD

.819 1.568 1.680 1.528 1.080 .611 ZORD

.772 1.476 1.582 1.439 1.017 .575 ZORD

.724 1.385 1.485 1.350 .954 .540 ZORD

.676 1.294 1.387 1.261 .891 .504 ZORD

.628 1.202 1.289 1.172 .829 .468 ZORD

.581 I.IIi 1.191 1.083 .766 .433 ZORD

.533 1.020 1.093 .994 .703 .397 ZORD

.485 .928 .995 .905 .640 .362 ZORD



000

126

000

113

000

099

000

O85

000

015

000

015

000

015

000

015

000

015

000

015

000

015

000

015

000

015

000

015

000

015

000

015

000

015

000

015

000

015

000

015

000

015

000

015

000

015

000

015

.00

.164 214

.000

.146 191

.000

.129 168

.000

.III 144

.000

.022 028

.000

.022 028

.000

.022 028

.000

.022 028

.000

.022 028

.000

.022 028

.000

.022 028

.000

.022 028

.000

.022 028

.000

.022 028

.000

.022 028

.000

.022 028

.000

.022 028

.000

.022 028

.000

.022 028

.000

.022 028

.000

.022 028

.000

.022 028

.000

.022 028

.000

.022 028

.000

1.66 4.44

.378

.337

.296

.255

.051

.051

.051

.051

.051

.051

.051

.051

.051

.051

.051

.051

.051

.051

.051

.051

.051

.051

.051

.051

6 53

102.44 104.89 143.16 153

.00 .00 .00

.00 .00 .00

-.81 -.81 -.81 -

-.81 -.81 -.81

.00 .59 1.15 1

2.77 2.50 2.12 1

-3.81 -3.75 -3.58 -3

.34 .86 1.31 1

.00 .98 1.92 2

4.62 4.16 3.54 2

-5.81 -5.72 -5.43 -4

i.!0 1.97 2.73 3

.00 1.26 2.47 3

6.00 5.39 4.57 3

-7.32 -7.21 -6.85 -6

1.48 2.59 3.55 4

.00 1.55 3.03 4

437

390

342

294

057

057

.057

057

057

057

057

057

057

057

057

057

057

057

057

057

057

057

057

057

8.16

.837

.746

.654

.563

.105

.105

.105

.105

.105

.105

.105

.105

.105

.105

.105

.105

.105

.105

.105

.105

.105

.105

.105

.105

.897 .816

.799 .727

.701 .638

.604 .549

.110 .097

.II0 .097

.ii0 .097

.ii0 .097

.II0 ' .097

Ii0 .097

II0 .097

II0 .097

110 .097

Ii0 .097

Ii0 .097

Ii0 .097

II0 .097

II0 .097

Ii0 .097

ii0 .097

110 .097

II0 .097

II0 .097

110 .097

.577

.514

.451

.388

.067

.067

.067

.067

.067

067

067

067

067

067

067

067

067

067

067

067

067

067

067

067

.326 ZORD

.291ZORD

.255 ZORD

.219 ZORD

.038

038

038

038

038

038

038

O38

038

038

038

038

038

038

O38

O38

038

.038

.038

.038

9.80 11.15 12.52 14.88 17.13

35 159.53 161.59 162.40 163.00 163.37 163.50

00 .00 .00 .00 .00

00 .00 .00 .00

81 -.81 -.81 -.81 81

81 -.81 -.81 -.81

67 2.12 2 50 2.77 2 94

67 1.15

31 -2.93 -2

68 1.96 2

78 3.54 4

78 1.92

97 -4.35 -3

35 3.81 4

59 4.57 5

59 2.47 1

27 -5.49 -4

33 4.91 5

41

59 .00

48 -1.96 -i 40

13 2.19

16 4.62 4 90

98 .00

59 -2.73 -i 79

09 4.19

39 6.00 6 37

26 .00

53 -3.43 -2 23

26 5.38

5.62 6.63 7.38 7 84

.00 .00

-.81 -.81

3.00 2.94

-.81 -.22

5.00 4.90

-.81 .17

6.50 6.37

-.97 .28

8.00 7.84



7.38 6.63 5.62 4.41 3.03 1.55
-8.55 -8.41 -7.97 -7.26 -6.30 -5.12 -3
2.27 3.62 4.80 5.76 6.47 6.91 7
.00 1.78 3.50 5.08 6.46 7.61 8

8.45 7.61 6.46 5.08 3.50 1.78
-9.42 -9.25 -8.74 -7 90 -6.77 -5.39 -3
3.17 4.74 6.12 7
.00 1.97 3.87 5

9.45 8.48 7.18 5
-9.99 -9.81 -9.27 -8
3.72 5.44 6.93 8

00 2.14 4.21 6
i0 35 9.27 7.84 6

-i0 62 -10.43 -9.86 -8

O0
77 -2.29 -.75 .79
O5
45 8.98 9.15 8.98
O0
82 -2.11 -.32 1.46

25 8.09 8 60 8.78
63 7.18 8
63 3.87 1
38 -7.17 -5
14 9.03 9
13 7.84 9
13 4.21 2
91 -7.62 -6

48 9.45 10.05 10.25 10.05
97 .00
68 -3.96 -2.09 -.12 1.85
57 9.76
27 10.35 11.02 11.25 11.02
14 .00
02 -4.17 -2.14 .00 2.14

4 17 6.02 7.62 8.91 9.86 i0 43 10.62
O0 2.34 4 60 6.71 8.59 10.17 11.37 12.12 12.38 12.12

Ii 37 10.17 8 59 6.71 4.60 2.34 .00
-11.50-11.30-i0 68 -9.67 -8 28 -6.56 -4.55 -2.33 .00 2.33

4.55 6.56 8 28 9.67 1068 11.30 11.50
.00 2.50 4 93 7.21 9 27 11.02 12.36 13.21 13.50 13.21

12.36 11.02 9 27 7.21 4 93 2.50 .00
-12.00-11.80-ii 18-10.15 -8 73 -6.95 -4 84 -2.49 .00 2.49

4.84 6.95 8.73 10.15 ii 18 11.80 12
.00 2.50 4.93 7.21 9.27 11.02 12

12.36 11.02 9.27 7.21 4.93 2.50
-12.00-11.80-11.18-10.15 -8.73 -6.95 -4

4.84 6.95 8.73 10.15 11.18 11.80 12
.00 2 48 4.89 7.16 9.22 10.98 12

12.34 I0 98 9.22 7.16 4.89 2.48

O0
36 13.21 13.50 13.21
O0
84 -2.49 .00 2.49
O0
34 13.20 13.50 13.20
00

-11.75-ii
4.78 6
.00 1

55-10.96 -9.97 -8.59 -6.85 -4.78 -2.46
85 8.59 9.97 10.96 11.55 11.75
07 2.13 3.13 4.06 4 86 5.51 5.93

1 07 .00
32 1.18

8 O0 8.07
3 36 3.83

73 .00
1 79 2.35
6 86 6.90

5.5I 4 86 4.06 3.13 2.13
-1.62 -i 54 -1.31 -.93 -.38
5.28 6.14 6.84 7.38 7.77
.00 .73 1.45 2.14 2.79

3.83 3.36 2.79 2.14 1.45
56 .60 .75 .99 1.33

5 II 5.68 6.13 6.47 6.72
O0 .51 1.02 1.51 1.98 2.39 2.74
74 2.39 1 98 1.51 1.02 .51 .00
77 1.80 1 89 2.05 2.28 2.58 2.96

88 5.26 5 56 5.79 5.94 6.03 6.06

O0 .38 75 1.11 1 45 1.76 2.02 2.19 2.25 2.19

2.02 1.76 1 45 i.ii 75 .38

2.46 2.48 2 55 2.67 2 83 3.05

4.75 5.03 5.25 5.41 5 53 5.60

.00 .28 .56 .83 1 09 1.32

1.51 1.32 1.09 .83 56 .28

2.94 2.96 3.01 3.10 3.22 3.39

4.66 4 86 5.03 5.15 5.24 5.29

.00 18 .36 .53 .69 .84

.96 84 .69 .53 .36 .18

.00 2.46

6.08 5.93

2.16 3.23 4.29

4.14 4.25 4.14

3.01 3.73 4.45

2.98 3.06 2.98

3.41 3.92 4.42

4.38 4.38 4.38 4.38 4.38 4 38 4.38 4.38 4.38

4.38 4.38 4.38 4.38 4.38 4.38 4.38

36.622 27.480-11.482

.000 .107 .397 .963 1.895 3.286 5.228 7.811 11.128 16.570

20.221 22.438 23.581 24.007 24.074

6.578 6.875 7.046 7.120 7.121 7.076 7.011 6.953 6.928 6.927

4.04 4.41

1.69 1.64

4.13 4.40

1.07 1.04

4.22 4.40

.46 .45

4.39

.00

4.38

3.47 3 48 3.51

4.56 4 69 4.79

.00 08 .15

.42 .36 .30

3.99 3.99 4.00

4.46 4.51 4.56

.00 .00 .00

.00 .00 .00

3.57 3.64 3.75 3.88 4.04

4.87 4.93 4.96 4.97

.23 .30 36 .42 .45

.23 .15 08 .00

4.03 4.06 4 Ii 4.16 4.23 4.31

4.59 4.62 4 63 4.64

.00 .00 00 .00 .00 .00

.00 .00 O0 .00

.00

3.33 3.67

5 62

1 51 1.64

O0

3 60 3.85

5 31

96 1.04

O0



6.918

117.659

.00

.00

147.000

.00

.00

6.892 6.842 6.760 6.638

-.095 3.500 42.056149.234 -.254 35.671 9.060

.42 2.12 6.22 13.71 24.98 39.60 56.24

1.90 2.87 3.69 4.14 4.05 3.45 2.50

.000 35.577 28.357171.474 34.560 35.577 7.089

2.75 8.26 18.20 32.63 50.14 68.54 84.82

1.87 2.93 3.75 3.99 3.53 2.54 1.39

72.85 i00.00 XFINI

1.49 .00 FORD1

96.01 i00.00 XFIN2

.45 .00 FORD2

engine.info

This file is generated by "RUN"

for use by "convert". It is the engine

geometry definition from the hermite

file.

36. 62229

36. 62229

36. 62229

36. 62229

36. 62229

36.62229

36.62229

36. 62229

36. 62229

36. 62229

36. 62229

36. 62229

36. 62229

36.62229

36. 62229

36. 62229

36. 62229

36. 62229

36. 62229

36. 62229

36. 62229

36.72929

36.72929

36.72929

36.72929

36.72929

36.72929

36.72929

36.72929

36.72929

36.72929

36.72929

36.72929

36.72929

36.72929

36.72929

36.72929

36.72929

36.72929

27.48000

29.51478

31.34912

32.80493

33.73910

34.05835

33.73910

32.80493

31.34912

29.51478

27.48000

25.44522

23.61088

22.15507

21.22090

20.90165

21 22090

22 15507

23 61088

25 44522

27 48000

27 48000

29 60646

31.52345

33.04485

34.02112

34.35475

34.02112

33.04485

31.52345

29.60646

27.48000

25.35354

23.43655

21.91515

20.93888

20.60525

20.93888

21.91515

4.74635

4.42710

3.49293

2.03712

0.20278

-1.83200

-3.86678

-5.70112

-7.15693

-8.09110

-8.41035

-8.09110

-7.15693

-5.70112

-3.86678

-1.83200

0.20278

2.03712

3.49293

4.42710

4.74635

5.04275

4.70912

3.73285

2.21145

0.29446

-1.83200

-3.95846

-5 87545

-7 39685

-8 37312

-8 70675

-8 37312

-7 39685

-5 87545

-3 95846

-183200

0.29446

2.21145

36.72929

36.72929

36.72929

37.01972

37 01972

37 01972

37 01972

37 01972

37 01972

37 01972

37 01972

37 01972

37 01972

37 01972

37 01972

37.01972

37.01972

37.01972

37.01972

37.01972

37.01972

37.01972

37.01972

37.01972

37.58531

37.58531

37.58531

37.58531

37.58531

37.58531

37.58531

37.58531

37.58531

37.58531

37.58531

37.58531

37.58531

37.58531

37.58531

37.58531

37 58531

37 58531

37 58531

37 58531

37 58531

38 51776

38 51776

38 51776

38 51776

38 51776

38 51776

38 51776

38.51776

38.51776

38.51776

38.51776

23.43655

25.35354

27 48000

27 48000

29 65957

31 62444

33 18385

34 18450

34 52647

34 18450

33 18385

31 62444

29 65957

27.48000

25.30043

23.33556

21.77615

20.77550

20.43353

20.77550

21.77615

23.33556

25.30043

27.48000

27.48000

29.68224

31.66754

33.24316

34.25422

34.59975

34.25422

33.24317

31.66754

29.68224

27.48000

25.27776

23.29246

21.71683

20.70578

20.36025

20 70578

21 71683

23 29246

25 27776

27 48000

27 48000

29 68257

31 66819

33.24405

34.25526

34.60084

34.25526

33.24405

31.66819

29.68258

27.48000

3.73285

4.70912

5.04275

5.21447

4.87250

3.87185

2.31244

0 34757

-I 83200

-4 01157

-5 97644

-7 53585

-8 53650

-8 87847

-8 53650

-7 53585

-5 97644

-4.01157

-1.83200

0.34757

2.31244

3.87185

4.87250

5.21447

5.28775

4.94222

3.93117

2.35554

0.37024

-1.83200

-4.03424

-6.01954

-7.59517

-8.60622

-8.95175

-8.60622

-7.59517

-6.01954

-4.03424

-1.83200

0.37024

2.35554

3.93117

4.94222

5.28775

5.28884

4.94326

3 93205

2 35619

0 37058

-I 83200

-4 03457

-6 02019

-7 59605

-8 60726

-8 95284



3851776
3851776
3851776
3851776
3851776
3851776
3851776
3851776
3851776
38.51776
39.90879
39.90879
39.90879
39.90879
39.90879
39.90879
39.90879
39.90879
39.90879
39.90879
39.90879
39.90879
39.90879
39.90879
39.90879
39.90879
39.90879
39.90879
39.90879
39.90879
39.90879
41.85013
41.85013
41.85013
41.85013
41.85013
41.85013
41.85013
41.85013
41.85013
41.85013
41.85013
4185013
4185013
4185013
4185013
4185013
4185013
4185013
4185013
4185013
4185013
4443347
4443347
4443347
44.43347
44.43347
44.43347
44.43347
44.43347
44.43347
44.43347
44.43347
44.43347
44.43347
44.43347
44.43347

25.27742
23.29181
21.71595
20.70474
20.35916
2070474
2171595
2329181
2527742
2748000
2748000
2966870
3164181
33.20775
34.21260
34.55600
34.21260
33.20775
31.64181
29.66870
27.48000
25.29129
23.31819
21.75225
20.74740
20.40400
20.74740
21.75225
23.31819
25.29129
27.48000
27.48000
29.64874
31.60386
33.15552
34.15120
34.49147
34.15120
33.15552
31.60386
29.64874
27.48000
25.31125
23.35614
21.80448
20.80880
20.46853
20.80880
21.80448
23.35614
2531125
2748000
2748000
2963081
3156976
3310859
3409604
3443350
3409604
3310860
31.56976
29.63081
27.48000
25.32918
23.39024
21.85140
20.86396

-8.60726
-7.59605
-6.02019
-4.03457
-1.83200
0.37058
2.35619
3.93205
4 94326
5 28884
5 24400
4 90060
3 89575
2 32981
0 35670

-i 83200
-4 02070
-5 99381
-7 55975
-8 56460
-8 90800
-8.56460
-7.55975
-5.99381
-4.02070
-1.83200
0.35670
2.32981
3.89575
4.90060
5.24400
5.17947
4.83920
3.84352
2.29186
0.33674

-1.83200
-4.00074
-5.95586
-7.50752
-8.50320
-8.84347
-8.50320
-7.50752
-5.95586
-4.00074
-1.83200
0.33674
2.29186
3.84352
4.83920
5.17947
5.12150
4.78404
3 79660
2 25776
0 31881

-I 83200
-3 98281
-5 92176
-7 46059
-8 44804
-8 78550
-8 44804
-7 46059
-5 92176
-3.98281

44.43347
44.43347
44.43347
44.43347
44.43347
44.43347
47.75055
47.75055
47.75055
4775055
4775055
4775055
4775055
4775055
4775055
4775055
4775055
4775055
4775055
4775055
4775055
47.75055

47.75055
47.75055
47.75055
47.75055
47.75055
47.75055
47.75055
47.75055
47.75055
47.75055
47.75055
47.75055
47.75055
47.75055
47.75055
47.75055
47.75055
47.75055
47.75055
47.75055
47.75055
47.75055
47.75055
47.75055
47.75055
47.75055
53.19272
53.19272
53.19272
53.19272
53.19272
53.19272
5319272
5319272
5319272
5319272
5319272
5319272
5319272
5319272
5319272
5319272
5319272
53.19272
53.19272

20.52650
20.86396
21.85140
23.39024
25.32919
27.48000
27.48000
29.62303
31.55497
33.08823
34.07211
34.40834
34.07211
33.08823
31.55497
29.62303
27.48000
2533697
2340503
2187177
2088789
2055166
2088789
2187177
2340503
2533697
2748000
2748000
2962303
31.55497
33.08823
34.07211
34.40834
34.07211
33.08823
31.55497
29.62303
27.48000
25.33697
23.40503
21.87177
20.88789
20.55166
20.88789
21.87177
23.40503
25.33697
27.48000
27.48000
29.62262
31.55418
33.08715
34.07083
34.40700
34.07083
33.08715
31.55418
2962262
2748000
2533738
2340582
2187285
2088917
2055300
2088917
2187285
23.40582

-1.83200
0.31881
2.25776
3.79660
4.78404
5.12150
5.09634
4.76011
3.77623
2.24297
0.31103

-1.83200
-3.97503
-5.90697
-7.44023
-8.42411
-8.76034
-8.42411
-7.44023
-5.90697
-3.97503
-i 83200
0 31103
2 24297
3 77623
4 76011
5 09634
5 09634
4.76011
3.77623
2.24297
0.31103

-1.83200
-3.97503
-5.90697
-7.44023
-8.42411
-8.76034
-8.42411
-7.44023
-5.90697
-3.97503
-1.83200
0.31103
2.24297
3.77623
4.76011
5.09634
5.09500
4.75883
3.77515
2:24218
0.31062

-1.83200
-3.97462
-5.90618
-7.43915
-8.42283
-8.75900
-8.42283
-7.43915
-5.90618
-3.97462
-1.83200
0.31062
2.24218
3.77515



53.19272
53.19272
56.84335
56.84335
56.84335
56.B4335
56.84335
56.84335
56.84335
56.84335
56.84335
56.84335
56.84335
56.84335
56.84335
56.84335
56.84335
56.84335
56.84335
56.84335
56.84335
56.84335
56.84335
5906075
5906075
5906075
5906075
5906075
5906075
5906075
5906075
5906075
5906075
59.06075
59.06075
59.06075
59.06075
59.06075
59.06075
59.06075
59.06075
59.06075
59.06075
59.06075
60.20322
60.20322
60.20322
60.20322
60.20322
60.20322
60.20322
60.20322
60.20322
60.20322
60.20322
60.20322
60.20322
60.20322
60.20322
60.20322
60.20322
60.20322
60.20322
60.20322
60.20322
60.62907
60.62907

25.33738
27.48000
27.48000
29.61971
31.54865
33.07954
34.06189
34.39760
34.06189
33.07954
31.54865
29.61971
27.48000
25.34029
23.41135
21.88046
20.89811
20.56240
20.89811
2188046
2341135
2534029
2748000
2748000
2961182
3153364
3305889
3403761
3437209
3403761
3305889
31.53365
29.61182
27.48000
25.34818
23.42635
21.90111
20.92238
20.58791
20.92238
21.90111
23.42635
25.34818
27.48000
27.48000
29.59645
31.50442
33.01867
33.99034
34.32241
33.99034
33.01867
31.50442
29.59645
27.48000
25.36355
23.45557
21.94133
20.96965
20.63759
2096965
2194133
2345557
2536355
2748000
2748000
2957112

4.75883
5.09500
5.08560
4.74989
3.76754
2.23665
0.30771

-1.83200
-3.97171
-5.90065
-7.43154
-8.41389
-8.74960
-8.41389
-7.43154
-5.90065
-3.97171
-1.83200
0.30771
2.23665
3.76754
4.74989
5.08560
5.06009
4.72561
3.74689
2.22165
0.29982

-1.83200
-3.96382
-5 88564
-7 41089
-8 38961
-8 72409
-8 38961
-7 41089
-5 88564
-3 96382
-i 83200
0.29982
2.22165
3.74689
4.72561
5.06009
5.01041
4.67834
3.70667
2.19243
0.28445

-1.83200
-3.94845
-5.85642
-7.37067
-8.34234
-8.67441
-8.34234
-7.37067
-5.85642
-3.94845
-1.83200
0.28445
2.19243
3.70667
4.67834
5.01041
4.92850
4.60041

60.62907
60.62907
60.62907
60.62907
60.62907
60.62907
60.62907
60.62907
60.62907
60.62907
60.62907
60.62907
60.62907
60.62907
60.62907
60.62907
60.62907
60.62907
60.62907
60.69661
60.69661
60.69661
60.69661
60.69661
60.69661
60.69661
60.69661
60.69661
60.69661
60.69661
60.69661
60.69661
6069661
6069661
6069661
6069661
6069661
6069661
6069661
6069661

3145625
3295237
3391241
3424050
3391241
3295237
3145625
2957112
2748000
25.38888
23.50375
22.00763
21.04759
20.71949
21.04759
22.00763
23.50375
25.38888
27.48000
27.48000
29.53332
31.38439
32.85347
33.79616
34.11832
33.79616
32.85347
31.38439
29.53332
27.48000
25.42667
23.57561
22.10653
21.16384
20.84168
21.16384
22.10653
23.57561
25.42668
27.48000

3 64037
2 14425
0 25912

-I 83200
-3 92312
-5 80825
-7 30437
-8.26441
-8.59250
-8.26441
-7.30437
-5.80825
-3.92312
-1.83200
0.25912
2.14425
3.64037
4.60041
4.92850
4.80632
4.48416
3.54147
2.07239
0.22132

-1.83200
-3.88532
-5.73639
-7.20547
-8.14816
-8.47032
-8.14816
-7.20547
-5.73639
-3.88532
-1.83200
0.22132
2.07239
3.54147
4.48416
4.80632

fuse.info

This file is generated by "RUN"

for use by "convert". It is the fuselage

geometry definition from the hermite

file. Note that only the positive values

of the "y" coordinate are extracted from

the hermite file.

0.00000 0.00000 -0.81116

0.00000 0.00000 -0.81116

0.00000 0.00000 -0.81116
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0 00000

0 00000

0 00000

0 00000

0 00000

0 00000

0 00000

0 00000

0 00000

0 00000

0 00000

0 00000

0 00000

1.29095

1.29095
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1.29095

1.29095

1.29095

1.29095

1.29095

1.29095

1.29095

1.29095

1.29095

1.29095

1.29095

1.29095

1.29095

1.29095

1.29095

1.65697

1.65697

1.65697

1.65697

I. 65697

1.65697

1.65697

1.65697

1.65697

1.65697

1.65697

I. 65697

1.65697

i. 65697

1.65697

1.65697

1.65697

1.65697

4.43710

4.43710

4 43710

4 43710

4 43710

4 43710

4 43710

4 43710

4 43710

4 43710

4 43710

4 43710

4 43710

4 43710
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0 00000

0 00000

0 00000

0 00000

0 00000

0 00000

0 00000

0 00000

0 00000

0 00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.55667

1.09107

1.58307

2.01437

2.36849

2.63154

2.79305

2.84716

2.79305

2.63154

2.36849

2.01437

1.58307

1.09107

0.55667

0.00000

0.00000

0.00000

0.58655

1.14964

1.66806

2.12250

2.49564

2.77280

2.94298

3.00000

2.94298

2.77280

2.49564

2.12250

1.66805

1.14964

0.58655

0.00000

0.00000

0.00000

0.97758

1.91607

2.78009

3.53750

4.15939

4.62134

4.90497

5.00000•

4 90497

4 62134

4 15939

3 53750

2 78009

1 91607

0 97758

-0.81116

-0.81116

-0.81116

-0.81116

-0.81116

-0.81116

-0.81116

-0.81116
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-0.81116
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-0.81116

-0.81116

-0.81116

2.03600

1.98189

1.82038

1 55733

1 20321

0 77191

0 27991

-0 25450

-0 81116

-I 36783

-I 90224

-2 39423

-2 82553

-3 17965

-3 44270

-3 60421

-3 65832

2 03600

2 18884

2 13182

1 96164

1 68447

1.31134

0.85689

0.33848

-0.22461

-0.81116

-1.39771

-1.96081

-2.47922

-2.93366

-3.30680

-3.58396

-3.75414

-3.81116

2.18884

4.18884

4.09381

3.81018

3.34823

2.72634

1.96893

1.10491

0.16642

-0.81116

-1.78874

-2.72723

-3.59125

-4.34866

-4.97055

-5.43250

-5.71613

4.43710

4.43710

6.52820

6.52820

6.52820

6.52820

6.52820

6.52820

6.52820

6.52820

6.52820

6.52820

6.52820

6.52820

6.52820

6.52820

6.52820

6.52820

6.52820

6.52820

8 16112

8 16112

8 16112

8 16112

8 16112

8 16112

8 16112

8 16112

8 16112

8 16112

8 16112

8 16112

8.16112

8.16112

8.16112

8.16112

8.16112

8.16112

9.80099

9.80099

9.80099

9.80099

9.80099

9.80099

9.80099

9.80099

9.80099

9.80099

9.80099

9.80099

9.80099

9.80099

9.80099

9.80099

9.80099

9.80099

11.14651

11.14651

11.14651

11.14651

11.14651

11.14651

11.14651

11.14651

11.14651

11.14651

11.14651

0.00000

0.00000

0.00000

1.25676

2.46648

3.58528

4.57178

5.38764

5.99739

6.37359

6.50000

6.37359

5.99739

5.38764

4.57177

3.58528

2.46648

1.25675

0.00000

0.00000

0.00000

1.54533

3.03316

4.40967

5.62400

6.62888

7.38031

7.84412

8.00000

7.84412

7.38031

6.62888

5 62400

4 40967

3 03316

1 54533

0 00000

0 00000

0 00000

1 78427

3 49829

5 07801

6 46472

7 60527

8 45367

8 97517

9 15000

8 97517

8.45367

7.60527

6.46472

5.07801

3.49829

1.78427

0.00000

0.00000

0.00000

1.96881

3.86684

5.62678

7.18394

8.47719

9.44746

10.04789

10.25000

10.04789

9.44746

-5.81116

4.18884

5.37661

5.25862

4.90552

4.32777

3.54543

2.58575

1.48431

0.28226

-0.97339

-2.22904

-3.43110

-4.53254

-5.49222

-6.27456

-6.85231

-7.20541

-7.32339

5.37661

7.05000

6.90535

6.47234

5.76358

4.80338

3.62482

2.27145

0.79386

-0.75000

-2.29386

-3.77145

-5.12482

-6.30338

-7 26358

-7 97234

-8 40535

-8 55000

7 05000

8 77554

8 60351

8 08971

7.25198

6.12263

4.74483

3.17090

1.45943

-0.32447

-2.10836

-3.81983

-5.39376

-6.77156

-7.90091

-8.73864

-9.25244

-9.42447

8.77554

9.75500

9.57395

9.03129

8.14102

6.93141

5.44142

3.72486

1.84605

-0.12000

-2.08605

-3.96486



11.14651

11.14651

11.14651

11.14651

11.14651

11.14651

11.14651

12.51889

12.51889

12.51889

12.51889

12.51889

12.51889

12.51889

12.51889

12.51889

12.51889

12.51889

12.51889

12.51889

12.51889

12.51889

12.51889

12.51889

12.51889

14.87571

14.87571

14.87571

14.87571

14.87571

14.87571

14.87571

14.87571

14.87571

14.87571

14.87571

14.87571

14.87571

14.87571

14.87571

14.87571

14.87571

14.87571

17.13131

17.13131

17 13131

17 13131

17 13131

17 13131

17 13131

17 13131

17 13131

17 13131

17 13131

17 13131

17 13131

17 13131

17 13131

17 13131

17 13131

17 13131

21.77243

21.77243

21.77243

21.77243

21.77243

21.77243

8 47719

7 18394

5 62678

3 86684

1 96881

0 00000

0 00000

0 00000

2 14090

4.20912

6.13384

7.84497

9.27451

10.35321

11.02370

11.25000

11.02370

10.35321

9.27451

7.84497

6.13384

4.20912

2,14090

0.00000

0.00000

0.00000

2.33746

4.59922

6.71004

8.59383

10.17499

11.37393

12.12195

12.37500

12.12195

11.37393

10.17499

8.59382

6.71004

4.59922

2.33746

0.00000

0.00000

0.00000

2.49915

4.92730

7.21021

9.26832

11.01719

12.36251

13.21100

13.50000

13.21100

12.36251

11.01719

9.26832

7 21021

4 92730

2 49914

0 00000

0 00000

0 00000

2 49915

4 92730

7 21021

9 26832

Ii 01719

-5 68142

-7 17141

-8 38102

-9 27128

-9 81395

-9 99500

9 75500

I0 62500

10 43384

9 85967

8 91429

7 62371

6 02481

4 17243

2 13627

0.00000

-2.13628

-4.17243

-6.02481

-7.62371

-8.91429

-9.85967

-10.43384

-10.62500

10.62500

11.50000

11.29621

10.68312

9.67078

8.28361

6.55725

4.54775

2.33096

0.00000

-2.33096

-4.54775

-6.55725

-8.28361

-9.67078

-10.68312

-11.29621

-11.50000

11.50000

12.00000

11.79585

11.17921

10.15356

8.73427

6.94722

4.83837

2.48781

0.00000

-2.48781

-4.83837

-6.94722

-8.73427

-10.15356

-11.17921

-11.79585

-12.00000

12.00000

12.00000

11.79585

11.17921

10.15356

8.73427

6.94722

21 77243

21 77243

21 77243

21 77243

21 77243

21 77243

21 77243

21 77243

21 77243

21.77243

21.77243

21.77243

102.43995

102.43995

102.43995

102.43995

102.43995

102.43995

102.43995

102.43995

102.43995

102.43995

102.43995

102.43995

102.43995

102.43995

102.43995

102.43995

102.43995

102.43995

104.88999

104.88999

104.88999

104.88999

104.88999

104.88999

104.88999

104.88999

104.88999

104.88999

104.88999

104.88999

104.88999

104.88999

104.88999

104.88999

104.88999

104.88999

117.90611

117.90611

117.90611

117.90611

117.90611

117.90611

117.90611

117.90611

117.90611

117.90611

117.90611

117 90611

117 90611

117 90611

117 90611

117 90611

117 90611

117 90611

143 15634

12.36251

13 21100

13 50000

13 21100

12 36251

Ii 01719

9 26832

7 21021

4 92730

2 49914

0 00000

0 00000

0 00000

2 49915

4 92730

7.21021

9.26832

11.01719

12.36251

13.21100

13.50000

13.21100

12.36251

11.01719

9.26832

7.21021

4.92730

2.49914

0.00000

0.00000

0.00000

2.47596

4.88588

7.15907

9.21789

10.97703

12.34015

13.20454

13.50000

13.20454

12.34015

10.97703

9.21789

7.15907

4.88588

2.47596

0.00000

0.00000

0.00000

1.98656

3.90961

5.70572

7.31032

8.65886

9.68283

10.32235

10.53884

10.32235

9.68283

8.65886

7.31032

5.70572

3.90961

1.98656

0.00000

0.00000

0.00000

4.83837

2.48781

0.00000

-2.48781

-4.83837

-6.94722

-8.73427

-10.15356

-11.17921

-11.79585

-12.00000

12.00000

12.00000

11.79585

11.17921

10.15356

8.73427

6.94722

4.83837

2.48781

0.00000

-2.48781

-4.83837

-6.94722

-8.73427

-i0 15356

-13 17921

-ii 79585

-12 00000

12 00000

ii 75000

ii 55385

i0 96033

9 96999

8 59350

6 85146

.78160

2.46260

0.00000

-2.46260

-4.78160

-6.85146

-8.59350

-9.96999

-10.96033

-11.55385

-11.75000

11.75000

11.04786

10.87580

10.35794

9.50219

8.32839

6.86579

5.16105

3.27855

1.29786

-0.68283

-2.56533

-4.27007

-5.73267

-6.90647

-7.76222

-8.28008

-8.45214

11.04786

8.07112



143.15634
143.15634
143.15634
143.15634
14315634
14315634
14315634
14315634
14315634
14315634
14315634
14315634
14315634
14315634
14315634
14315634
143.15634
153.34991
153.34991
153.34991
153.34991
153.34991
153.34991
153.34991
153.34991
153.34991
153.34991
153.34991
153.34991
153.34991
153.34991
153.34991
153.34991
153.34991
153.34991
158.42068
158.42068
158.42068
158.42068
158.42068
158.42068
15_42068
15842068
15842068
15842068
15842068
15842068
15842068
15842068
15842068
15842068
15 .42068
158.42068
159.53050
159.53050
159.53050
159.53050
159.53050
159.53050
159.53050
159.53050
159.53050
159.53050
159.53050
159.53050
159.53050
159.53050

1.07368
2.12546
3.12976
4.05573
4.86469
5.51052
5.93123
6.07745
5.93123
5 51052
4 86469
4 05573
3 12976
2 12546
1 07368
0 00000
0.00000
0.00000
0.73159
1.45102
2.14332
2.78927
3.36281
3.83000
4.14212
4.25223
4.14212
3.83000
3.36281
2.78927
2.14332
1.45102
0.73159
0.00000
0.00000
0.00000
0.54225
1.07713
1.59514
2.08348
2.52353
2.88852
3.13929
3.22922
3 13929
2 88852
2 52353
2 08348
1 59514
1 07713
0 54225
0 00000
0 00000
0.00000
0.51462
1.02225
1.51387
1.97733
2.39496
2.74136
2.97936
3.06470
2.97936
2.74136
2.39496
1.97733
1.51387

7.99615
7.76795
7.38272
6.83823
6.13510
5.27650
4.29039
3.22670
2.16301
1.17689
0.31829

-0.38484
-0.92932
-1.31456
-1.54276
-1.61772
8.07112
6.90440
6.85786
6.71571
6.47403
6.12873
5.67631
5.11414
4.45365
3.73134
3.00904
2.34855
1.78637
1.33395
0.98865
0.74698
0.60482
0.55829
6.90440
6.15429
6.12273
6.02606
5.86078
5.62247
5.30620
4.90730
4.42690
3.89357
3.36025
2.87985
2.48095
2.16468
1.92637
1.76109
1.66442
1.63286
6.15429
6.06391
6.03396
5.94221
5.78535
5.55919
5.25903
4.88045
4.42452
3.91837
3.41222
2.95629
2.57771
2.27755
2.05139

159.53050
159.53050
159.53050
159,53050
160.62208
160.62208
160.62208
160.62208
160.62208
160.62208
160.62208
160.62208
160.62208
160.62208
160.62208
160.62208
160.62208
160.62208
160.62208
160.62208
16062208
16062208
16159118
16159118
16159118
16159118
16159118
16159118
16159118
161.59118
161.59118
161.59118
161.59118
161.59118
161.59118
161.59118
161.59118
161.59118
161.59118
161.59118
162.39552
162.39552
162.39552
162.39552
162.39552
162.39552
162.39552
162.39552
162.39552
162.39552
162.39552
162.39552
162.39552
162.39552
162.39552
162.39552
162.39552
16239552
16299896
16299896
16299896
16299896
16299896
16299896
16299896
162.99896
162.99896

1.02225
0.51462
0.00000
0.00000
0.00000
0.45736
0.90850
1.34541
1.75730
2.12846
2.43631
2.64782
2.72367
2.64782
2.43631
2.12846
1.75730
1.34541
0.90850
0.45736
0.00000
0.00000
0.00000
0.37844
0 75174
1 11326
1 45408
1 76119
2 01592
2 19094
2.25370
2.19094
2.01592
1.76119
1.45408
1.11326
0.75174
0.37844
0.00000
0.00000
0.00000
0.28365
0.56344
0.83442
1.08986
1.32006
1.51098
1.64216
1.68920
1.64216
1.51098
1.32006
1.08986
0.83442
0.56344
0.28365
0.00000
0.00000
0.00000
0 18009
0 35774
0 52978
0 69197
0 83812
0 95934
1 04263
1 07249

1.89453
1.'80278
1.77283
6.06391
5.87656
5.84994
5.76840
5.62900
5.42800
5.16125
4.82479
4.41960
3.96977
3.51994
3.11475
2.77829
2.51154
2.31054
2.17114
2.08960
2.06298
5.87656
5.61838

5.59635
5.52888
5.41353
5 24722
5 02649
4 74809
4 41281
4 04060
3 66839
3 33311
3 05471
2 83399
2 66767
2 55232
2 48486
2 46283
5 61838
5.30826
5.29175
5.24118
5.15472
5.03007
4.86463
4.65596
4.40466
4.12568
3.84670
3.59540
3.38674
3.22130
3.09664
3.01018
2.95961
2.94310
5.30826
4.96946
4.95898
4.92687
4.87198
4.79283
4.68779
4.55531
4.39576
4.21863



162.99896 1.04263
162.99896 0.95934
162.99896 0.83812
162.99896 0.69197
162.99896 0.52978
162.99896 0.35774
162.99B96 0.18009
162.99896 0.00000
162.99896 0.00000
163.37317 0.00000
163.37317 0.07792
163.37317 0.15477
163.37317 0.22921
163.37317 0.29938
163.37317 0.36261
163.37317 0.41506
163.37317 0.45109
163.37317 0.46401
163.37317 0.45109
163.37317 0.41506
163.37317 0.36261
163.37317 0.29938
163.37317 0.22921
163.37317 0.15477
163.37317 0.07792
163.37317 0.00000
163.37317 0.00000
163.50000 0.00000
163.50000 0.00000
163.50000 0.00000
163.50000 0.00000
163.50000 0.00000
163.50000 0.00000
163.50000 0.00000
163.50000 0.00000
163.50000 0.00000
163.50000 0.00000
163.50000 0.00000
163.50000 0.00000
163.50000 0.00000
163.50000 0.00000
163.50000 0.00000
163.50000 0.00000
163.50000 0.00000
163.50000 0.00000

4 04150
3 88195
3 74947
3 64443
3 56528
3 51039
3 47828
3 46780
4 96946
4 63519
4 63065
4 61676
4.59301
4.55877
4.51332
4.45600
4.38697
4.31034
4.23370
4.16467
4.10736
4.06191
4.02767
4.00392
3.99003
3.98549
4.63519
4.38027
4.38027
4.38027
4.38027
4.38027
4.38027
4.38027
4.38027
4.38027
4.38027
4.38027
4.38027
4.38027
4.38027
4.38027
4.38027
4.38027
4.38027

171.05143
166.43676
161.21884
156.25287
152.16008
149.34337
147.78065
147.14524
147.00271
147.00000
147.02056
147.21206
147.90829
149.50193
152.26985
156.24823
161.18606
166.39156
171.01622
174.21283
175.35670
178.56283
178.28029
177.48651
176.33284
175.02836
173.78687
172.76367
17205949
17166881
17150996
17147433
17147365
17147879
171.52667
171.70072
172.09913
172.79111
173.78571
175.02017
176.32154
177.47771
178.27686
178.56283

0 00000
0 00000
0 00000
0 00000
0 00000
0 00000
0 00000
0 00000
0 00000
0 00000
0 00000
0 00000
0 00000
0 00000
0 00000
0 00000
0 00000
0 00000
0 00000
0 00000
0 00000

3455973
3455973
3455973
3455973
3455973
3455973
3455973
3455973
3455973
3455973
34.55973
34.55973
34.55973
34.55973
34.55973
34.55973
34.55973
34.55973
34.55973
34.55973
34.55973
34.55973
34.55973

36.19012
36.69306
37.09704
37.27500
37.12294
36.68527
3621527
3585648
3564552
3557694
3551146
3534454
3515263
3502266
3499535
3501156
3509773
3525262
3540401
3551263
3557694
3557694
3562458
3573024
3585597
3595697
3600146
3596344
3585402
3573652
3564683
3559409
3557694
3556057
3551884
3547086
3543837
3543154
3543560
3545714
3549586
3553371
3556086
3557694

h tail.info
i

v tail.info

This file is generated by "RUN"

for use by "convert". It is the horizontal

tail geometry definition from the hermite

file.

This file is generated by "RUN"

for use by "convert". It is the vertical

tail geometry definition from the hermite

file.

175.35670 0.00000 35.57694

174.22655 0.00000 35.76748

159.71515 0.00000 3.50000

158.29393 -0.18626 3.50000

154.26788 -0.57065 3.50000



148.29596

141.31044

134.31272

128.16423

123.42474

120.27650

118.54947

117.83603

1i7.65947

117.64725

117.65947

117.83603

118.54947

120.27650

123.42474

128 16423

134 31272

141 31044

148 29596

154 26788

158 29393

159 71515

162 81893

162 34993

161 02133

i59 05060

156.74538

154.43613

152.40713

150.84310

149.80418

149.23426

148.99882

148.94056

148.93653

148.94056

148.99882

149.23426

149.80418

150.84310

152.40713

154.43613

156.74538

159.05060

161.02133

162.34993

162.81893

-1.06657

-1.53317

-1.83535

-1.87452

-1.64303

-1.23133

-0.76894

-0.36566

-0.09506

0.00000

0.09506

0.36566

0.76894

1 23133

1 64303

1 87452

1 83535

1 53317

1 06657

0 57065

0 18626

0 00000

0 00000

-0 06146

-0 18831

-0 35197

-0 50595

-0 60567

-0 61859

-0 54220

-0 40634

-0.25375

-0.12067

-0.03137

0.00000

0.03137

0.12067

0.25375

0.40634

0.54220

0.61859

0.60567

0.50595

0.35197

0.18831

0.06146

0.00000

3.50000

3.50000

3.50000

3.50000

3.50000

3.50000

3.50000

3.50000

3.5O0O0

3.50000

3.5O0OO

3.50000

3.50000

3.50000

3.50000

3.50000

3.50000

3.50000

3.50000

3.50000

3.50000

3.50000

35.67142

35.67142

35.67142

35.67142

35.67142

35.67142

35.67142

35.67142

35.67142

35.67142

35.67142

35.67142

35.67142

35.67142

35.67142

35.67142

35 67142

35 67142

35 67142

35 67142

35 67142

35 67142

35 67142

35 67142

35 67142

85.01401

83.48122

79.17639

72.92105

65.84954

59.11044

53.61118

49.82186

47.69893

46.81894

46.60963

46.60000

46.62189

46.86508

47.78903

49.94193

53.71795

59.15246

65.82976

72.87856

79.13947

83.46624

85.01401

124.25581

123.88028

122.82559

121.29304

119.56051

117.90944

116.56212

115.63373

115 11362

114 89802

114 84674

114 84438

114 84974

114 90932

115 13569

115 66315

116 58827

117 91973

119 55567

121.28262

122.81655

123.87661

124.25581

0.00000

0.00000

0.00000

0.00000

0.00000
0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

131.51996

131.51996

131.51996

131.51996

131.51996

131.51996

131.51996

131.51996

131.51996

131 51996

131 51996

131 51996

131 51996

131 51996

13i 51996

131 51996

131 51996

131 51996

131 51996

131 51996

131 51996

131 51996

131 51996

9.65000

9.93801

10.55550

11.29293

11.88729

12.12603

11.90075

11.34772

10.69955

10.14199

9.77657

9.65000

9.52496

9.18144

8.70801

8.23910

7.93390

7.91017

8.16277

8.60887

9.09022

9.46287

9.65000

9.65000

9.72056

9.87185

10.05252

10.19814

10.25663

10.20143

10.06594

9.90714

9.77054

9.68101

9.65000

9.61937

9.53520

9.41921

9.30433

9.22956

9.22374

9.28563

9.39492

9.51285

9.60415

9.65000

wing.info
hthick

This file is generated by "RUN"

for use by "convert", It is the wing

geometry definition from the hermite

file.

This file is created by the user

from information obtained in RAM. The

three numbers listed are the maximum

thickness, location of maximum



thickness,andthe leadingedgeradiusof

the horizontal tail airfoil. This

information is neededby AERO2Sand

is insertedinto the AERO2S input file

via "RUN".

0.080.30.705

thick

This file is created by the user

from information obtained in RAM. The

three numbers listed are the maximum

thickness, location of maximum

thickness, and the leading edge radius of

the wing airfoil. This information is

needed by AERO2S and is inserted into

the AERO2S input file via "RUN".

AER02S and BDAP Input Files

0.1i 0.3 1.333

mission

This file is also created by the

user. The three numbers listed are the

case number under consideration, the

Math number for analysis, and the

altitude for analysis. This file is used by

"RUN" and is inserted to both BDAP

and AERO2S. It is also used by

"convert" to determine the Reynolds

number for the given flight condition.

1 0.3 1000.0

AERO2S

This file is the input file for the AERO2S program. It is a product of both the

shell script "RUN" and the geometry conversion program "convert".

GLOBAL AERO ANALYSIS STUDY

$INPTI

NLEY=3,

TBLEY(1)= .0000, 13.5000,131.5200,

TBLEX(1)= .0000, 53.6050,114.8444,

NTEY = 3,

TBTEY(1)= .0000, 13.5000,131.5200,

TBTEX(1)=I63.5000, 89.0420,124.2558,



XMAX=I78.5628,
SREF= 2900.000,
CBAR= 28.780,
XMC= 40.822,

JBYMAX=20,
NYC=20,
TBYC=.000,13.500,13.844,20.766,27.688,34.6ii, 41.533,48.455,
55.377,62.299,69.221,76.143,83.065,89.987,96.909,103.832,

110.754,117.676,124.598,131.520,
NPCTC=I2,
TBPCTC=0.0,0.5,0.75,2.5,7.5,20.0,30.0,50.0,70.0,85.0,95.0,100.0,

TZORDC=-.811, -.811, -.811, -.811, -.022, .000, 000, .000, .000,
200 .200, .200,14"0.0,
000 .001, .011, .052, .138, .257, .353, 360, .289, .166,
048 .000,14"0.0,
000 .001, 011, .050, .132, .246, .339, 345, .277, 159,
046 .000,14"00,
000 .001, 010, .047, .126, .235, .324, 330, .265, 152,
044 .000,14"00,
000 .001, 010, .045, .121, .225, .310, 315, .253, 145,
042 .000,14"00,
000 .001, 009, .043, .115, .214, .295, 301, .241, 139,

.040 .000,14"00,

.000 .001, 009, .041, .109, .204, .280, .286, .229, 132,

.038 .000,14"00,

.000 .001, 008, .039, .104, .193, .266, .271, .217, 125,

.036 .000,14"00,

.000 .001, 008, .037, .098, .182, .251, .256, .205, 118,

.034, .000,14"00,

.000, .000, 008, .035, .092, .172, .236, .241, .193, iii,

.032 .000,14"00,

.000 .000, 007, .032, .086, .161, .222, .226, .181, 104,

.030 .000,14"00,

.000 .000, .007, .030, 081 .150, .207, .211, .169, 097,

.028 .000,14"00,

.000 .000, .006, .028, 075 .140, .193, .196, .157, 090,

.026 .000,14"00,

.000 000, .006, .026, 069, .129, 178, .181, .145, .084,

.024 000,14"0.0,
.000 000, .005, .024, 064, .119, 163, .166, .134, .077,
.022 000,14"0.0,
.000 000, .005, .022, 058, .108, 149, .151, .122, .070,
.020 000,14"0.0,
.000 000, .004, .020, 052, .097, 134, .137, .ii0, .063,
.018 000,14"0.0,
.000 000, .004, .017, 047, .087, 119, .122, .098, .056,
.016 000,14"0.0,
.000 000, .003, .015, 041, .076, 105, .107, .086, .049,
.014 000,14"0.0,
.000 000, .003, .013, 035, .065, 090, .092, .074, .042,
.012 000,14"0.0,

NYR=2
TBYR=.000,131.520,
TBTOC= 0.090,0.090,
TBETA= 0.300,0.300,
TBROC= 0.893,0.893,
XM= .30,
RN= 59.65,
IVOROP=I,
NALPHA=I0,

TALPHA=-5.,-4.,-2.,-1.,0.,1.,2.,4.,6.,8.,
ILS2=2,
NLEY2=2,
TBLEY2=.000,34.560,
TBLEX2=I47.000,171.474,
NTEY2= 2,
TBTEY2= .000,34.560,



TBTEX2=I75.357,178.563,
NYC2=2,
TBYC2=.000,34.560,
NPCTC2=2,
TBPCTC2=0.0,100.0,
TZORDC2=52*0.0,
NYR2=2,
TBYR2=.000,34.560,
DELTA2=2.0,
TBTOC2= 0.080,0.080,
TBETA2= 0.300,0.300,
TBROC2= 0.705,0.705,
SEND

BDAP

This file is the input file for the BDAP program. It is a product of both the shell

script "RUN" and the geometry conversion program "convert".

GEOM NEW

GLOBAL AERO ANALYSIS STUDY

1 1 1 1 1

2900.0 28.78

.00 .50

95.00 100.00

46.600 .000

50.192 6.922

53 784 13.844

57 375 20.766

60 967 27.688

64 559 34.611

68 151 41.533

71 743 48.455

75 334 55.377

78 926 62.299

82 518 69.221

86 II0 76.143

89.702 83.065

93.294 89.987

96.885 96.909

100.477103.832

104.069110.754

107.661117.676

111.253124.598

114.844131.520

.000 .451

.347 .000

.000 .433

.334 .000

.000 .415

.320 .000

.000 .398

.306 .000

.000 .380

.292 .000

.000 .362

1 0 20 12 1 17 20 1 15 1 10 1 I0 CONTROL

40.82

.75 2.50 7.50 20.00 30.00 50.00 70.00 85.00 XAF

XAF

9.650 38 414

9.650 36 888

9.650 35 361

9.650 33 835

9.650 32 308

9.650 30 782

9.650 29.255

9.650 27.729

9.650 26.202

9.650 24.676

9.650 23.149

9.650 21.623

9.650 20.097

9.650 18.570

9.650 17.044

9 650 15.517

9 650 13.991

9 650 12.464

9 650 10.938

9 650 9.411

589 1.039

.565 .998

.542 .956

.518 .915

.495 .874

.472 .833

1.201 2.299 2.463 2.241 1.584 .895 ZORD

1.153 2.207 2.366 2.152 1.521 .860 ZORD

1.106 2.116 2.268 2.063 1.458 .824 ZORD

1.058 2.024 2.170 1.973 1.395 .789 ZORD

1.010 1.933 2.072 1.884 1.332 .753 ZORD

.962 1.842 1.974 1.795 1.269 .718 ZORD



.278 .000

.000 .344

.265 .000

.000 .326

.251 .000

.000 .308

.237 .000

.000 .290

.223 .000

.000 .272

.209 .000

.000 .254

.196 .000

.000 .236

.182 .000

.000 .218 .285

.168 .000

.000 .200 .261

.154 .000

.000 .182 .238

.140 .000

.000 .164 .214

.126 .000

.000 .146 191

.113 .000

.000 .129 168

.099 .000

.000 .iii 144

.085 .000

.000 .022 028

.015 .000

.000 .022 028

.015 .000

.000 .022 028

.015 .000

.000 .022 028

.015 .000

.000 .022 028

.015 .000

.000 .022 028

.015 .000

.000 .022 028

.015 .000

.000 .022 028

.015 .000

.000 .022 028

.015 .000

.000 .022 028

.015 .000

.000 .022 028

.015 .000

.000 .022 028

.015 .000

.000 .022 028

.015 .000

.000 .022 028

.015 .000

.000 .022 028

.015 .000

.000 .022 028

.015 .000

.000 .022 028

.015 .000

.000 .022 028

.015 .000

.000 •.022 028

.015 .000

448 .791

425 .750

402 .709

378 .667

355 .626

331 .585

308• .544

.502

.461

.420

.378

.337

.296

.255

.051

.051

.051

.051

.051

.051

.051

.051

.051

.051

.051

.051

.051

.051

.051

.051

.051

.051

.051

915 1.750 1.876 1.706 1.206

867 1.659 1.778 1.617 1.143

819 1.568 1.680 1.528 1.080

772 1.476 1.582 1.439 1.017

724 1.385 1.485 1.350

676 1.294 1.387 1.261

628 1.202 1.289 1.172

581 I.iii 1.191 1.083

533 1.020 1.093 .994

.954

.891

.829

.766

.703

485 .928 .995 .905 .640

437 .837 .897 .816 .577

390 .746 .799 .727 .514

.342 .654 .701 .638 .451

294 .563 .604 .549 .388

057 .105 .110 .097 .067

057 .105 .II0 .097 _ .067

057 .105 .ii0 .097 .067

057 .105 .Ii0 .097 .067

057 .105 .110 .097 .067

057 .105 .110 .097 .067

057 .105 .ii0 .097 .067

057 .105 .110 .097 .067

057 .105 .ii0 .097 .067

057 .105 .ii0 .097 .067

057 .105 .ii0 .097 .067

057 .105 .II0 .097 .067

.057 .105 .110 .097 .067

.057 .105 .Ii0 .097 .067

.057 .105 .110 .097 .067

.057 .105 .110 .097 .067

.057 .105 .110 .097 .067

.057 .105 .110 .097 .067

.057 .105 .Ii0 .097 .067

.682 ZORD

.646 ZORD

.611 ZORD

.575 ZORD

540 ZORD

504 ZORD

468 ZORD

433 ZORD

397 ZORD

362 ZORD

326 ZORD

291 ZORD

255 ZORD

219 ZORD

O38

O38

O38

O38

O38

O38

038

O38

038

O38

O38

038

O38

O38

038

038

038

O38

038



.000

.015
.00

102.44104.89143.1615335159.53161
.00 .00 .00
.00 .00 .00

-.81 -.81 -.81

-.81 -.81 -.81

.00 .59 1 15 1

2 77 2.50 2 12 1

-3 81 -3.75 -3 58 -3

34 .86 1 31 1

4

O0 .00

00 .00

81 -.81 -

81 -.81

67 2.12 2

67 1.15

31 -2.93 -2

68 1.96 2

00 .98 1 92 2.78 3.54 4

62 4.16 3 54 2.78 1.92

.022 .028 .051 ,057 .105 .110 .097 .067 .038

.000

1.66 4.44 6.53 8.16 9 80 11.15 12.52 14.88 17.13

59 162.40 163.00 163.37 163.50

O0 .00 .00 .00 .00

O0 .00

81 -.81 81 -.81 -.81

81 -.81

50 2.77 2 94 3.00 2.94

59 .00

48 -1.96 -i 40 -.81 -.22

13 2.19

16 4.62 4 90 5.00 4.90

98 .00

-5 81 -5.72 -5

1 10 1.97 2

00 1.26 2

6 O0 5.39 4

-7 32 -7.21 -6

1 48 2.59 3

O0 1.55 3

7 38 6.63 5

-8 55 -8.41 -7

2.27 3.62 4

.00 1.78 3

8.45 7.61 6

43 -4.97 -4.35 -3.59 -2.73 -I 79 -.81

73 3.35 3.81 4.09 4.19

47 3.59 4.57 5.39 6.00 6 37 6.50

57 3.59 2.47 1.26 .00

85 -6.27 -5_49 -4.53 -3.43 -2.23 -.97

55 4.33 4.91 5.26 5.38

03 4.41 5.62 6.63 7.38 7.84 8.00

62 4.41 3.03 1.55 .00

97 -7.26 -6.30 -5.12 -3.77 -2.29 -.75

80 5.76 6.47 6.91 7.05

50 5.08 6.46 7.61 8.45 8.98 9.15

46 5.08 3.50 1.78 .00

.17

6.37

.28

7 84

79

8 98

1 46

9.45 8.48 7.18 5.63 3

-9.99 -9.81 -9.27 -8.38 -7

3.72 5.44 6.93 8.14 9

.00 2.14 4.21 6.13 7

10.35 9.27 7.84 6.13 4

-10.62 -10.43 -9.86 -8.91 -7

4.17 6.02 7.62 8.91 9

.00 2.34 4.60 6.71 8

11.37 10.17 8.59 6.71 4

87 1.97 .00

17 -5.68 -3 96 -2.09 -.12

03 9.57 9

84 9.27 i0

21 2.14

62 -6.02 -4

86 10.43 10

59 10.17 II

60 2.34

1 85

76

35 11.02 11.25 11.02

O0

17 -2.14 .00 2.14

62

37 12.12 12.38 12.12

O0

-11.50 -11.30 -10.68 -9.67 -8.28 -6.56 -4

4.55 6.56 8.28 9.67 10.68 11.30 Ii

.00 2 50 4.93 7.21 9.27 11.02 12

12.36 ii

-12.00 -ii

4.84 6

.00 2

12.36 II

-12.00 -II

4.84 6

.00 2

12.34 10

55 -2.33 00 2.33

5O

36 13.21 13 50 13.21

02 9.27 7.21 4.93 2.50 O0

80 -11.18 -10.15 -8.73 -6.95 -4 84 -2.49 O0 2.49

95 8.73 10.15 11.18 11.80 12 O0

50 4.93 7.21 9.27 11.02 12.36 13.21 13 50 13.21

02 9.27 7.21 4.93 2.50 .00

80 -11.18 -10.15 -8.73 -6.95 -4.84 -2.49 O0 2.49

95 8.73 10.15 11.18 11.80 12.00

48 4.89 7.16 9.22 10.98 12.34 13.20 13 50 13.20

98 9.22 7.16 4.89 2.48 .00

-11.75 -11.55 -10.96 -9.97 -8.59 -6.85 -4.78 -2.46

4.78 6.85 8.59 9.97 10.96 11.55 11.75

.00 1.07 2.13 3 13 4.06 4.86 5.51

5.51 4.86 4.06 3

-1.62 -1.54 -1.31

5.28 6.14 6.84 7

.00 .73 1.45 2

3.83 3.36 2.79 2

.56 .60 .75

5.11 5.68 6.13 6

00 .51 1.02 1

2 74 2.39 1.98 1

1 77 1.80 1.89 2

4

2

2

13 2.13 1.07

93 -.38

38 7.77 8

14 2.79 3

14 1.45

99 1.33 1

47 6.72 6

51 1.98 2

51 1.02

05 2.28 2

88 5.26 5.56 5.79 5.94 6

O0 .38 .75 i.ii 1.45 1

02 1.76 1.45 I.II .75

46 2.48 2.55 2.67 2.83 3

.00

32 1.18

00 8.07

36 3.83

73 .00

79 2.35

86 6.90

39 2.74

51 .00

58 2.96

03 6.06

76 2.02

38 .00

05 3.33

O0 2.46

5.93 6.08 5.93

2.16 3.23 4.29

4.14 4.25 4.14

3.01 3.73 4.45

2.98 3.06 2.98

3.41 3.92 4.42

2.19 2.25 2.19

3.67 4.04 4.41

-9.42 -9.25 -8.74 -7.90 -6.77 -5.39 -3.82 -2.11 -.32

3.17 4.74 6.12 7.25 8.09 8.60 8.78

.00 1.97 3.87 5.63 7 18 8.48 9.45 10.05 10.25 i0 05



4 75
00

1 51
2 94
4 66

00
96

3 47
4 56
.00
.42

3.99
4.46
.00
.00

4.38
4.38

36.622
.000

20.221
6.578
6.918

117.659
.00
.00

147.000
.00
.00

SKFR
SKINFORGRA
1 1 1 1 1
i.
0.30 1.0
END

5.03 5 25
.28 56

1.32 1 09
2.96 3 01
4.86 5 03
.18 36
.84 69

3.48 3 51
4.69 4 79
.08 15
.36 30

3.99 4 00
4.51 4 56
.00 00
.00 00

4.38 4 38
4.38 4 38

27.480-11.482
.107 .397

22.43823.581
6.875 7.046
6.892 6.842
-.095 3.500

.42 2.12
1.90 2.87
.00035.577
2.75 8.26
1.87 2.93

0.0 1.0

5.41 5.53 5.60 5.62
.83 1.09 1.32 1.51
.83 .56 .28 .00

3.10 3.22 3.39 3.60
5.15 5.24 5.29 5.31
.53 .69 .84 .96
.53 .36 .18 .00

3.57 3.64 3.75 3.88
4.87 4.93 4.96 4.97
.23 .30 .36 .42
.23 .15 .08 .00

4.03 4.06 4.11 4.16
4.59 4.62 4.63 4.64
.00 .00 .00 .00
.00 .00 .00 .00

4.38 4.38 4.38 4.38
4.38 4.38 4.38 4.38

.963 1.895
24.00724.074
7.120 7.121
6.760 6.638

42.056149.234
6.22 13.71
3.69 4.14

28.357171.474
18.20 32.63
3.75 3.99

3.286 5.228

i. 64 1.69 1 64

3.85 4.13 4 40

1.04 1.07 1 04

4.04 4.22 4 40

.45 .46 45

4.23 4.31 4 39

.00 .00 00

4.38 4.38 4 38

7.81111.12816.570

7.076 7.011 6.953 6.928 6.927

-.25435.6719.060
24.98 39.60 56.24 72.85100.00XFINI
4.05 3.45 2.50 1.49 .00FORD1

34.56035.577 7.089
50.14 68.54 84.82 96.01100.00XFIN2
3.53 2.54 1.39 .45 .00FORD2

Parsed RAM Files

baseline.ram

This file is the file required to execute RAM. The geometry definition given is

specific to the RAM program. The information needed form this file is the wing

reference area and the mean aerodynamic chord length. Both of these values are at the

end of the file.

RAM GEOMETRY FILE 1.05

5 Number Of Components

//***************** FUSE COMPONENT *****************//

// .... General Parms .... //

1 Type

Fuselage Name

0 ID Number

5915991 ID String



0
0

0.000 0.000 0.000
0.000 0.000 0.000

// .... Fuse Parms .... //

163.500000

0.000000

0.500000

0.000000

0.000000

0.300000

0.640000

0.640000

18

// .... Cross Section Number 0

0

-0.811161

0.000000

33

// .... Cross Section Number 1

4

-0.811161

0.010000

33

6.000000

6.000000

0.830000

0.830000

0.830000

0.830000

0.000000

0.000000

1.570796

1.570796

// .... Cross Section Number 2

4

-0.811161

0.027109

33

10.000000

i0.000000

0.830000

0.830000

0.830000

0.830000

0.000000

0.000000

1.570796

1.570796

// .... Cross Section Number 3

4

-0.973394

0.040000

33

12.700000

13.000000

0.830000

0.830000

0.830000

0.830000

0.000000

0.000000

1.570796

1.570796

// .... Cross Section Number 4

2

-0.750000

Color

Symmetry Code

Translation

Rotation

Fuse Length

Camber

Camber Location

Aft Offset

Nose Angle

Nose Strength

Nose Rho

Aft Rho

Number of Xsecs

.... /!

Fuse Xsec Type

Z Offset

Location On Spine

Number of Pnts Per Xsec

.... /!

Fuse Xsec Type

Z Offset

Location OnSpine

Number of Pnts Per Xsec

Height

Width

Top Tan Strength

Upper Tan Strength

Lower Tan Strength

Bottom Tan Strength

Max Width Location

Corner Radius

Top Tan Angle

Bot Tan Angle

.... !!

Fuse Xsec Type

Z Offset

Location On Spine

Number of Pnts Per Xsec

Height

Width

Top Tan Strength

Upper Tan Strength

Lower Tan Strength

Bottom Tan Strength

Max Width Location

Corner Radius

Top Tan Angle

Bot Tan Angle

.... !!

Fuse Xsec Type

Z Offset

Location On Spine

Number of Pnts Per Xsec

Height

Width

Top Tan Strength

Upper Tan Strength

Lower Tan Strength

Bottom Tan Strength

Max Width Location

Corner Radius

Top Tan Angle

Bot Tan Angle

.... !!

Fuse Xsec Type

Z Offset



0.050000
33

15.600000

16.000000

// .... Cross SectionNumber 5

2

-0.324465

0.060000

33

18.200001

18.299999

// .... Cross Section Number 6

2

-0.120000

0.068438

33

19.750000

20.500000

// .... Cross Section Number 7

2

0.000000

0.076875

33

21.250000

22.500000

// .... Cross Section Number 8

2

0.000000

0.091094

33

23.000000

24.750000

// .... Cross Section Number 9

2

0.000000

0.105313

33

24.000000

27.000000

Location On Splne

Number of Pnts Per Xsec

Height

Width

....//
Fuse Xsec Type

Z Offset

Location On Splne

Number of Pnts Per Xsec

Height

Width

....//

Fuse Xsec Type

Z Offset

Location On Splne

Number of Pnts Per Xsec

Height

Width

....//

Fuse Xsec Type

Z Offset

Location On Splne

Number of Pnts Per Xsec

Height

Width

....//

Fuse Xsec Type

Z Offset

Location On Splne

Number of Pnts Per Xsec

Height

Width

....//

Fuse Xsec Type

Z Offset

Location On Splne

Number of Pnts Per Xsec

Height

Width

// .... Cross Section Number i0 .... //

2 Fuse Xsec Type

0.000000 Z Offset

0.133750 Location On Splne

33 Number of Pnts Per Xsec

24.000000 Height

27.000000 Width

// .... Cross Section Number ii .... //

2 Fuse Xsec Type

0.000000 Z Offset

0.625000 Location On Splne

33 Number of Pnts Per Xsec

24.000000 Height

27.000000 Width

// .... Cross Section Number 12 .... //

2 Fuse Xsec Type

0.000000 Z Offset

0.640000 Location On Splne

33 Number of Pnts Per Xsec

23.500000 Height

27.000000 Width

// .... Cross Section Number 13 .... //

2 Fuse Xsec Type

1.297859 Z Offset

0.720000 Location On Splne

33 Number of Pnts Per Xsec

19.500000 Height

21.077679 Width



// .... Cross Section Number 14 .... //

2 Fuse Xsec Type

3.226697 Z Offset

0.875000 Location On Spine

33 Number of Pnts Per Xsec

9.688839 Height

12.154900 Width

// .... Cross Section Number 15 .... //

2 Fuse Xsec Type

3.731343 Z Offset

0.937500 Location On Spine

33 Number of Pnts Per Xsec

6.346115 Height

8.504459 Width

// .... Cross Section Number 16 .... //

2 Fuse Xsec Type

3.893575 Z Offset

0.968750 Location On Spine

33 Number of Pnts Per Xsec

4.521437 Height

6.458439 Width

// .... Cross Section Number 17 .... //

0 Fuse Xsec Type

4.380273 Z Offset

1.000000 Location On Spine

33 Number of Pnts Per Xsec

//***************** WING COMPONENT *****************//

// .... General Parms .... //

0

Wing

6255751

17

0

46.600 0.000 9.650

0.000 0.000 0.000

// .... Wing Parms .... //

1

263.039917

11.000000

0.245000

6290.000000

38.414009

9.411432

0.463760

0.250000

0.000000

0.000000

0.000000

3

0.110507

0.608696

0.200000

2

0.110507

0.943841

0.110507

0

// .... Root Airfoil .... //

23

0.010000

0.410000

0.110000

// .... Tip Airfoil .... //

23

0.010000

Type

Name

ID Number

ID String

Color

Symmetry Code

Translation

Rotation

Wing Driver Group

Span

Aspect Ratio

Taper Ratio

Area

Root Chord

Tip Chord

Tan Sweep

Sweep Loc

Tan Dihedral

Twist Loc

Twist

Flap Type

Flap Inboard Span

Flap Outboard Span

Flap Chord

Slat Type

Slat Inboard Span

Slat Outboard Span

Slat Chord

All Move CS

Num of Airfoil Pnts

Airfoil Camber

Camber Loc

Thickness

Num of Airfoil Pnts

Airfoil Camber



0.410000 CamberLoc
0.ii0000 Thickness

//***************** WING COMPONENT *****************//

// .... General Parms .... //

0

Vertical

6623343

4

0

117.647 0.000 3.500

90.000 0.000 0.000

Type

Name

ID Number

ID String

Color

Symmetry Code

Translation

Rotation

// .... Wing Parms .... //

1 Wing Driver Group

64.342834 Span

2.300000 Aspect Ratio

0.330000 Taper Ratio

1800.000000 Area

42.067890 Root Chord

13.882404 Tip Chord

0.753554 Tan Sweep

0.250000 Sweep Loc

0.000000 Tan Dihedral

0.000000 Twist Loc

0.000000 Twist

1 Flap Type

0.137681 Flap Inboard Span

0.844203 Flap Outboard Span

0.318841 Flap Chord

0 Slat Type

0.000000 Slat Inboard Span

1.000000 Slat Outboard Span

0.200000 Slat Chord

0 All Move CS

// .... Root Airfoil .... //

25 Num of Airfoil Pnts

0.000000 Airfoil Camber

0.000000 Camber Loc

0.090000 Thickness

// .... Tip Airfoil ====//

25 Num of Airfoil Pnts

0.000000 Airfoil Camber

0.000000 Camber Loc

0.090000 Thickness

//***************** WING COMPONENT *****************//

// .... General Parms .... //

0 Type

H Tail Name

3 ID Number

6855951 ID String

62 Color

0 Symmetry Code

147.000 0.000 35.577 Translation

0.000 0.000 0.000 Rotation

// .... Wing Parms .... //

1 Wing Driver Group

69.119461 Span

3.900000 Aspect Ratio

0.250000 Taper Ratio

1225.000000 Area

28.356701 Root Chord

7.089175 Tip Chord

0.554309 Tan Sweep

0.250000 Sweep Loc

0.000000 Tan Dihedral



0.000000 TwistLOC
0.000000 Twist
1 FlapType
0.047101 FlapInboardSpan
0.925725 FlapOutboardSpan
0.300725 FlapChord
0 Slat Type
0.000000 Slat InboardSpan
1.000000 Slat OutboardSpan
0.200000 Slat Chord
0 All MoveCS
// .... Root Airfoil .... //

23 Num of Airfoil Pnts

0.020000 Airfoil Camber

0.300000 Camber Loc

0.080000 Thickness

// .... Tip Airfoil .... //

23 Num of Airfoil Pnts

0.020000 Airfoil Camber

0.300000 Camber Loc

0.080000 Thickness

//***************** ENGINE COMPONENT *****************//

// .... General Parms .... //

2 Type

Engine_l Name

4 ID Number

6975946 ID String

1 Color

0 Symmetry Code

41.301 27.480 -1.832 Translation

0.000 0.000 0.000 Rotation

// .... Engine Parms .... //

0 Engine_Type

4.694000 Radius_Tip

1.476000 Max_Tip

0.325000 Hub_Tip

4.122000 Eng_Length

// .... Inlet Parms .... //

1 Inlet_Type

0 Inl Noz Color

0 Inlet XYLSym_Flag

// .... Subsonic Pitot Inlet Parms .... //

0 Inlet_Half_Split_Flag

1.000000 Cowl_Length

1.000000 Eng_Thrt_Ratio

1.706000 Hilight_Thrt_Ratio

1.868494 Lip_Finess Ratio

1.000000 Height_WidTh Ratio

-2.000000 Upper_Surf Shape_Factor

-1.000000 Lower_Surf Shape_Factor

0.000000 Inlet X Axis Rot

0.000000 Inlet_Scarf_Angle

// .... Inlet Duct Parms .... //

0 Inlet Duct On/Off Flag

3.000000 Inlet Duct X Offset

1.000000 Inlet Duct Y Offset

0.500000 Inlet_Duct_Shape_Factor

// .... Divertor Parms .... //

0 Divertor On/Off Flag

0.500000 Divertor Height

1.000000 Divertor Length

// .... Nozzle Parms .... //

0 Nozzle_Type

// .... Converg and Diverge Parms .... //

0.010000 Nozzle Length

0.500000 Exit Area Ratio



1.000000 Nozzle_Height_Width_Ratio
1.500000 Exit ThroatRatio
1.000000 Dive_Flap_Ratio
// .... Nozzle Duct Parms .... //

0 Nozzle_Duct On/Off Flag

1.000000 Nozzle Duct X Offset

0.000000 Nozzle Duct Y Offset

0.000000 NozzleDuct_Shape_Factor

//************* AERO PARMS *************//

1 Wing Reference Component (ID #/Name)

2900.000000 Reference Area

107.703293 Reference Span

28.780294 Reference Chord

40.822 0.000 0.000 C.G. Location

-I None Trimming Component (ID #/Name)


